DOI QR코드

DOI QR Code

Spinal Nerve Position and Morphometric Analysis with Silicon Molds in the Cadaveric Lumbar Intervertebral Foramen

허리의 척수신경위치와 실리콘을 이용한 척추사이구멍에 대한 형태학적 분석

  • Kwon, Soonwook (Department of Anatomy, School of Medicine, Catholic University of Daegu)
  • 권순욱 (대구가톨릭대학교 의과대학 해부학교실)
  • Received : 2018.12.04
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

The intervertebral foramen is formed by two adjacent vertebrae and an intervertebral disc. Previous studies examining the foramen have been performed using various methods. The author obtained characteristics of the intervertebral foramen based on silicon mold. The author used 18 cadavers and dissected the lumbar intervertebral foramen. First, positional levels of the spinal nerve in the intervertebral foramen were measured. Second, after being removed all tissues covering the intervertebral, bony foramen was filled with melted silicon to mold the cross section. Subsequently, the solidified silicon mold was removed and stamped on a paper. The paper was scanned and analyzed area, perimeter, height and width of the intervertebral foramen on a computer. Area (average, $9.43mm^2$) and perimeter (average, 48.02 mm) did not show any statistical significant pattern for any lumbar vertebral levels. However, the height and width significantly differed at the fifth lumbar vertebra, which had the shortest height (the fifth, 13.00 mm; average, 15.78 mm) and longest width (the fifth, 8.61 mm; average, 7.87 mm), although there were similar patterns in case of area and perimeter of the first to fourth lumbar vertebra. Height had a decrease tendency while width had an increase tendency both from the second to fifth lumbar vertebra. Spinal nerves went through near the intervertebral disc level from the first to fourth lumbar vertebra, although they passed below the disc at the fifth level. This study provides a different view of methodology for the 3-dimensional aspect for the intervertebral foramen. Results of this study may indicate that height and width of the intervertebral foramen changed along all lumbar vertebral levels; nevertheless, area and perimeter of the intervertebral foramen remained constant.

척추사이구멍은 인접한 두 척추뼈와 그 사이의 척추사이원반으로 구성된다. 이전의 척추사이구멍에 대한 연구들은 다양한 방법으로 수행이 되었다. 이번 연구에서는 실리콘 주형을 이용해서 척추사이구멍의 특징을 알아보았다. 시신18구를 해부하여 허리의 척추사이구멍을 해부하였다. 첫째로는 척수신경의 위치를 측정하였다. 둘째로는 척추사이구멍을 덮고있는 모든 조직을 제거하여 척추사이구멍 단면의 가장 좁은 부위를 측정하였다. 조직이 제거된 척추사이구멍은 실리콘주형으로 채워졌다. 실리콘주형이 굳어진 다음에는 구멍에서 분리되었다. 단면으로 잘린 실리콘주형을 종이 위에 도장처럼 찍고, 그것을 컴퓨터에 저장하였다. 척추사이구멍의 주형의 면적, 둘레, 높이, 폭이 컴퓨터에서 분석되었다. 허리의 다섯 개 척추사이구멍에서 면적과 둘레는 통계학적인 차이를 보이지 않았다. 하지만 둘째에서 다섯째 허리뼈에 걸쳐서 높이는 낮아지는 경향, 폭은 넓어지는 경향을 보였다. 또한 높이와 폭은 다섯째 구멍에서 유의미한 차이가 있었다. 높이는 다른 구멍들 중에서 가장 낮았고, 폭은 가장 넓었다. 척수신경은 첫째에서 넷째허리뼈에서는 척추사이원반 근처를 지나갔고, 다섯째허리뼈에서는 척추사이원반 아래쪽으로 지나갔다. 이번 연구는 척추사이구멍의 3차원적 입체 구조를 실리콘주형으로 확인하였다. 기존의 평면적 연구에서 관찰되지 않았던 다른 성질들을 확인할 수 있었다. 즉, 허리척추뼈에서 척추사이구멍의 면적과 둘레는 일정하였으나 높이와 폭은 전체적으로 변화하는 양상을 보였다.

Keywords

References

  1. Sunderland S. Meningeal-neural relations in the intervertebral foramen. J Neurosurg. 1974; 40:756-63. https://doi.org/10.3171/jns.1974.40.6.0756
  2. Fujiwara A, An HS, Lim TH, Haughton VM. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine. 2001; 26:876-82. https://doi.org/10.1097/00007632-200104150-00010
  3. Inman VT, Saunders JBdM. The clinico-anatomical aspects of the lumbosacral region. Radiology. 1942; 38:669-78. https://doi.org/10.1148/38.6.669
  4. Cramer GD, Cantu JA, Dorsett RD, Greenstein JS, Mc-Gregor M, Howe JE, et al. Dimensions of the lumbar intervertebral foramina as determined from the sagittal plane magnetic resonance imaging scans of 95 normal subjects. J Manipulative Physiol Ther. 2003; 26:160-70. https://doi.org/10.1016/S0161-4754(02)54109-9
  5. Hasegawa T, Mikawa Y, Watanabe R, An HS. Morphometric analysis of the lumbosacral nerve roots and dorsal root ganglia by magnetic resonance imaging. Spine. 1996; 21: 1005-9. https://doi.org/10.1097/00007632-199605010-00001
  6. Karabekir HS, Gocmen-Mas N, Edizer M, Ertekin T, Yazici C, Atamturk D. Lumbar vertebra morphometry and stereological assesment of intervertebral space volumetry: a methodological study. Ann Anat. 2011; 193:231-6. https://doi.org/10.1016/j.aanat.2011.01.011
  7. Smith GA, Aspden RM, Porter RW. Measurement of vertebral foraminal dimensions using three-dimensional computerized tomography. Spine. 1993; 18:629-36. https://doi.org/10.1097/00007632-199304000-00016
  8. Torun F, Dolgun H, Tuna H, Attar A, Uz A, Erdem A. Morphometric analysis of the roots and neural foramina of the lumbar vertebrae. Surg Neurol. 2006; 66:148-51. https://doi.org/10.1016/j.surneu.2006.02.041
  9. Knapik DM, Abola MV, Gordon ZL, Seiler JG, Marcus RE, Liu RW. Differences in cross-sectional intervertebral foraminal area from C3 to C7. Global Spine J. 2018; 8:600-6. https://doi.org/10.1177/2192568218758085
  10. Senoo I, Espinoza Orias AA, An HS, Andersson GB, Park DK, Triano JJ, et al. In vivo 3-dimensional morphometric analysis of the lumbar foramen in healthy subjects. Spine. 2014; 39:E929-35. https://doi.org/10.1097/BRS.0000000000000399
  11. Epstein BS, Epstein JA, Lavine L. The effect of anatomic variations in the lumbar vertebrae and pinal canal on cauda equina and nerve root syndromes. AJR Am J Roentgenol. 1964; 91:1055-63.
  12. Al-Hadidi MT, Abu-Ghaida JH, Badran DH, Al-Hadidi AM, Ramadan HN, Massad DF. Magnetic resonance imaging of normal lumbar intervertebral foraminal height. Saudi Med J. 2003; 24:736-41.
  13. Min JH, Kang SH, Lee JB, Cho TH, Suh JG. Anatomic analysis of the transforaminal ligament in the lumbar intervertebral foramen. Neurosurgery. 2005; 57:37-41.
  14. Inufusa A, An HS, Lim TH, Hasegawa T, Haughton VM, Nowicki BH. Anatomic changes of the spinal canal and intervertebral foramen associated with flexion-extension movement. Spine. 1996; 21:2412-20. https://doi.org/10.1097/00007632-199611010-00002
  15. Magnuson PB. Differential diagnosis of causes of pain in the lower back accompanied by sciatic pain. Ann Surg. 1944; 119:878-91. https://doi.org/10.1097/00000658-194406000-00008
  16. Cinotti G, De Santis P, Nofroni I, Postacchini F. Stenosis of lumbar intervertebral foramen: anatomic study on predisposing factors. Spine. 2002; 27:223-9. https://doi.org/10.1097/00007632-200202010-00002
  17. Miller JA, Schmatz C, Schultz AB. Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine. 1988; 13:173-8. https://doi.org/10.1097/00007632-198802000-00008
  18. Schlegel JD, Champine J, Taylor MS, Watson JT, Champine M, Schleusener RL, et al. The role of distraction in improving the space available in the lumbar stenotic canal and foramen. Spine. 1994; 19:2041-7. https://doi.org/10.1097/00007632-199409150-00004
  19. Ruhli FJ, Muntener M, Henneberg M. Human osseous intervertebral foramen width. Am J Phys Anthropol. 2006; 129:177-88. https://doi.org/10.1002/ajpa.20263
  20. Kitagawa T, Fujiwara A, Kobayashi N, Saiki K, Tamai K, Saotome K. Morphologic changes in the cervical neural foramen due to flexion and extension: in vivo imaging study. Spine. 2004; 29:2821-5. https://doi.org/10.1097/01.brs.0000147741.11273.1c