Effect of the Bifunctional Chelate on the Biodistribution of 99mTc-labeled Cyclic RGD Peptide

  • Lee, Dong-Eun (Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Choi, Kang-Hyuk (Radioisotope Research Division, Basic Science and Technology Department, Korea Atomic Energy Research Institute (KAERI))
  • 투고 : 2018.11.05
  • 심사 : 2018.12.18
  • 발행 : 2018.12.31

초록

A novel $N_3S_1$ chelate, Pro-Lys-Cys (PKC) to cyclic RGD to radiolabel with $^{99m}Tc$ was conjugated in an effort to decrease the high intestinal accumulation observed for $^{99m}Tc$-labeled PGC-RGD. The target specificity of the resulting PKC-RGD was similar to that of PGC-RGD as determined by a cell binding assay and a competition binding assay. The $^{99m}Tc$ radiolabeling of PKC-RGD resulted in radiochemical yields of 98% under mild conditions at high specific activities. Biodistribution data in normal mice clearly showed a significant decrease in intestinal uptake at 2 h postinjection for the $^{99m}Tc-PKC-c$ (RGDyK) compared to the $^{99m}Tc-GC-c$ (RGDyK) (from $19.65%ID{\cdot}g^{-1}$ to $7.31%ID{\cdot}g^{-1}$ for the GI tract). The $^{99m}Tc-PKC-c$ (RGDyK) biodistribution was also shown by a higher retention of radioactivity in the whole body, but with kidney accumulation over 8-fold higher than observed with $^{99m}Tc-PGC-c$ (RGDyK) at 2 h ($12.62%ID{\cdot}g^{-1}$ for PKC-RGD and $1.54%ID{\cdot}g^{-1}$ for PGC-RGD, respectively). These results show that the biodistribution may be altered especially concerning lipophilicity resulting in renal rather than hepatobiliary excretion. This comparative study made it possible to explore the effects of lipophilicity on the biodistribution of $^{99m}Tc$-labeled c (RGDyK) through the use of different tripeptide $N_3S_1$ chelators. Therefore, $^{99m}Tc-PKC-c$ (RGDyK) may be an attractive alternative for the in vivo imaging of integrin receptors.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation (NRF)

참고문헌

  1. Chen X, Hou Y, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, Bading JR, Laug WE and Conti PS. 2004a. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor ${\alpha}v{\beta}3$-integrin expression. J. Nucl. Med. 45(10):1776-1783.
  2. Chen X, Park R, Shahinian AH, Bading JR and Conti PS. 2004b. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl. Med. Biol. 31:11-19. https://doi.org/10.1016/j.nucmedbio.2003.07.003
  3. Cyr JE, Pearson DA, Wilson DM, Nelson CA, Guaraldi M, Azure MT, Lister-James J, Dinkelborg LM and Dean RT. 2007. Somatostatin Receptor-Binding Peptides Suitable for Tumor Radiotherapy with Re-188 or Re-186. Chemistry and Initial Biological Studies. J. Med. Chem. 50:1354-1364. https://doi.org/10.1021/jm061290i
  4. Decristoforo C and Mather SJ. 1999. 99m-Technetium-Labelled Peptide-HYNIC Conjugates: Effects of Lipophilicity and Stability on Biodistribution. Nucl. Med. Biol. 26:389-396. https://doi.org/10.1016/S0969-8051(98)00118-8
  5. Decristoforo C, Faintuch-Linkowski B, Rey A, Guggenberg EV, Rupprich M, Hernandez-Gonzales I, Rodrigo T and Haubner R. 2006. [99mTc]HYNIC-RGD for imaging integrin ${\alpha}v{\beta}3$expression. Nucl. Med. Biol. 33:945-952. https://doi.org/10.1016/j.nucmedbio.2006.09.001
  6. Decristoforo C, Santos I, Pietzsch HJ, Kuenstler JU, Duatti A, Smith CJ, Rey A, Alberto R, Guggenberg EV and Haubner R. 2007. Comparison of in vitro and in vivo properties of 99mTc-cRGD peptides labeled using different novel Tccores. QJ Nucl. Med. Mol. Imaging 51:33-41.
  7. Dijkgraaf I, Kruijtzer JAW, Liu S, Soede AC, Oyen WJG, Corstens FHM, Liskamp RMJ and Boerman OC. 2007. Improved targeting of the ${\alpha}v{\beta}3$ integrin by multimerisation of RGD peptides. Eur. J. Nucl. Med. Mol. I. 34:267-273. https://doi.org/10.1007/s00259-006-0180-9
  8. Haubner R, Bruchertseifer F, Bock M, Kessler H, Schwaiger M and Wester HJ. 2004. Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD peptide for imaging the ${\alpha}v{\beta}3$ expression. Nucl. Med. (Stuttg). 43(1):26-32.
  9. Haubner R, Wester HJ, Burkhart F, Senekowisch-Schmidtke R, Weber W, Goodman SL, Kessler H and Schwaiger M. 2001. Glycolated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J. Nucl. Med. 42:326-336.
  10. Lee DE, Hong YD, Choi KH, Lee SY, Park PH and Choi SJ. 2010. Preparation and evaluation of 99mTc-labeled cyclic Arginine-Glycine-Aspartate (RGD) peptide for integrin targeting. Appl. Radiat. Isotopes. 68:1896-1902. https://doi.org/10.1016/j.apradiso.2010.04.029
  11. Liu S. 2008. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug. Deliver. Rev. 60:1347-1370. https://doi.org/10.1016/j.addr.2008.04.006
  12. Liu S and Edwards DS. 1999. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem. Rev. 99:2235-2268. https://doi.org/10.1021/cr980436l
  13. Liu S, Robinson SP and Edwards DS. 2003. Integrin ${\alpha}v{\beta}3$ directed radiopharmaceuticals for tumor imaging. Drugs Future 28:551-564. https://doi.org/10.1358/dof.2003.028.06.740860
  14. Pearson DA, Lister-James J, McBride WJ, Wilson DM, Martel LJ, Civitello ER, Taylor JE, Moyer BR and Dean RT. 1996. Somatostatin receptor-binding peptides labeled with technetium-99m: chemistry and initial biological studies. J. Med. Chem. 39:1361-1371. https://doi.org/10.1021/jm950111m
  15. Temming K, Schiffelers RM, Molema G and Kok RJ. 2005. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug. Resist. Update. 8:381-402. https://doi.org/10.1016/j.drup.2005.10.002
  16. Vanderheyden J, Liu G, He J, Patel B, Tait JF and Hnatowich DJ. 2006. Evaluation of 99mTc-MAG3-annexin V: influence of the chelate on in vitro and in vivo properties in mice. Nucl. Med. Biol. 33:135-144. https://doi.org/10.1016/j.nucmedbio.2005.09.002
  17. Verbeke K, Snauwaert K, Cleynhens B, Scheers W and Verbruggen A. 2000. Influence of the bifunctional chelate on the biological behavior of 99mTc-labeled chemotactic peptide conjugates. Nucl. Med. Biol. 27:769-779. https://doi.org/10.1016/S0969-8051(00)00168-2
  18. Zitzmann S, Ehemann V and Schwab M. 2002. Arginine-Glycine-Aspartic acid (RGD)-peptide binds to both tumor and tumor endothelial cells in vivo. Cancer Res. 62:5139-5143.