DOI QR코드

DOI QR Code

Genes Related to Intracellular Survival of Brucella abortus in THP-1 Macrophage Cells

  • Shim, Soojin (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Im, Young Bin (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Jung, Myunghwan (Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine) ;
  • Park, Woo Bin (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Yoo, Han Sang (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University)
  • Received : 2018.05.29
  • Accepted : 2018.08.21
  • Published : 2018.10.28

Abstract

Brucella abortus can survive and replicate within host macrophages, and great efforts have been made to demonstrate the genes involved in pathogenicity, such as internalization, in Brucella research. Here, intracellular responses were compared between THP-1 macrophage cells stimulated with B. abortus wild-type and four mutants (C1, C10, C27, and C32) using microarray to demonstrate the role of genes related to intracellular survival and replication. These mutants were generated by deleting genes encoding BAB_RS13225 (4-hydrobenzoate 3-monooxygenase, PHBH), BAB_RS00455 (heme exporter protein cytochrome C, CcmC), BAB_RS03675 (exopolyphosphatase, PPX), and BAB_RS13225 (peptidase M24). The results showed that mutants C1 and C10 induced significant suppression of survival levels and cytokine expression relative to wild-type in the THP-1 macrophage cells. These findings suggest that the BAB_RS13225 and BAB_RS00455 genes play important roles in survival within human macrophages. Conversely, mutants C27 and C32 induced significantly higher survival level than wild-type in the cells inhibiting cellular signal transduction. It is assumed that the BAB_RS03675 and BAB_RS13225 genes play a role in cellular resistance to B. abortus. Therefore, the disrupted genes are involved in B. abortus intracellular growth, and especially in its survival, and they could be effective targets for understanding the intracellular bacterium, B. abortus.

Keywords

References

  1. Pappas G, Akritidis N, Bosilkovski M, Tsianos E. 2005. Brucellosis. N. Engl. J. Med. 352: 2325-2336. https://doi.org/10.1056/NEJMra050570
  2. Young EJ. 1995. An overview of human brucellosis. Clin. Infect. Dis. 21: 283-289; 290. https://doi.org/10.1093/clinids/21.2.283
  3. N Xavier M, A Paixao T, B den Hartigh A, M Tsolis R, L Santos R. 2010. Pathogenesis of Brucella spp. Open Vet. Sci. J. 4: 109-118 https://doi.org/10.2174/1874318801004010109
  4. Finlay BB, Falkow S. 1989. Common themes in microbial pathogenicity. Microbiol. Rev. 53: 210-230.
  5. Anna Martirosyan EM, Jean-Pierre Gorvel. 2011. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol. Rev. 240: 211-234 https://doi.org/10.1111/j.1600-065X.2010.00982.x
  6. Neyen C, Lemaitre B. 2016. Sensing Gram-negative bacteria: a phylogenetic perspective. Curr. Opin. Immunol. 38: 8-17. https://doi.org/10.1016/j.coi.2015.10.007
  7. Ko J, Splitter GA. 2003. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin. Microbiol. Rev. 16: 65-78. https://doi.org/10.1128/CMR.16.1.65-78.2003
  8. Copin R, Vitry MA, Hanot Mambres D, Machelart A, De Trez C, Vanderwinden JM, et al. 2012. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoS Pathog. 8: e1002575. https://doi.org/10.1371/journal.ppat.1002575
  9. Jiang X, Leonard B, Benson R, Baldwin CL. 1993. Macrophage control of Brucella abortus: role of reactive oxygen intermediates and nitric oxide. Cell Immunol. 151: 309-319. https://doi.org/10.1006/cimm.1993.1241
  10. Golding B, Scott DE, Scharf O, Huang LY, Zaitseva M, Lapham C, et al. 2001. Immunity and protection against Brucella abortus. Microb. Infect. 3: 43-48. https://doi.org/10.1016/S1286-4579(00)01350-2
  11. Barquero-Calvo E, Chaves-Olarte E, Weiss DS, Guzman-Verri C, Chacon-Diaz C, Rucavado A, et al. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2: e631. https://doi.org/10.1371/journal.pone.0000631
  12. Arenas GN, Staskevich AS, Aballay A, Mayorga LS. 2000. Intracellular trafficking of Brucella abortus in J774 macrophages. Infect. Immun. 68: 4255-4263. https://doi.org/10.1128/IAI.68.7.4255-4263.2000
  13. Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, et al. 2001. Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol. 3: 487-497. https://doi.org/10.1046/j.1462-5822.2001.00131.x
  14. Larsen AK, Nymo IH, Briquemont B, Sorensen KK, Godfroid J. 2013. Entrance and survival of Brucella pinnipedialis hooded seal strain in human macrophages and epithelial cells. PLoS One 8: e84861. https://doi.org/10.1371/journal.pone.0084861
  15. Pei J, Ficht TA. 2003. Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect. Immun. 72: 440-450.
  16. Roop RM, 2nd, Gaines JM, Anderson ES, Caswell CC, Martin DW. 2009. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Med. Microbiol. Immunol. 198: 221-238. https://doi.org/10.1007/s00430-009-0123-8
  17. Cha SB, Rayamajhi N, Lee WJ, Shin MK, Jung MH, Shin SW, et al. 2012. Generation and envelope protein analysis of internalization defective Brucella abortus mutants in professional phagocytes, RAW 264.7. FEMS Immunol. Med. Microbiol. 64: 244-254. https://doi.org/10.1111/j.1574-695X.2011.00896.x
  18. Truong QL, Cho Y, Park S, Park BK, Hahn TW. 2016. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice. Microb. Pathog. 95: 175-185. https://doi.org/10.1016/j.micpath.2016.04.009
  19. Park WB, Im YB, Jung M, Yoo HS. 2015. Molecular characteristics of Brucella abortus mutants generated using EZ-Tn5Tm pMODTm-3 transposon system. J. Prev. Vet. Med. 39: 144-152. https://doi.org/10.13041/jpvm.2015.39.4.144
  20. Entsch B, Ballou D, Husain M, Massey V. 1976. Catalytic mechanism of p-hydroxybenzoate hydroxylase with p-mercaptobenzoate as substrate. J. Biol. Chem. 251: 7367-7369.
  21. Dalvi S, Youssef NH, Fathepure BZ. 2016. Microbial community structure analysis of a benzoate-degrading halophilic archaeal enrichment. Immunol. Rev. 20: 311-321.
  22. Sanderson TH, Raghunayakula S, Kumar R. 2015. Neuronal hypoxia disrupts mitochondrial fusion. Neuroscience 301: 71-78. https://doi.org/10.1016/j.neuroscience.2015.05.078
  23. Rao NN, Kornberg A. 1996. Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J. Bacteriol. 178: 1394-1400. https://doi.org/10.1128/jb.178.5.1394-1400.1996
  24. Schmelzle T, Hall MN. 2000. TOR, a central controller of cell growth. Cell 103: 253-262. https://doi.org/10.1016/S0092-8674(00)00117-3
  25. Rao NN, Gomez-Garcia MR, K ornberg A. 2009. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78: 605-647. https://doi.org/10.1146/annurev.biochem.77.083007.093039
  26. Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE. 1999. Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J. Mol. Biol. 290: 607-614. https://doi.org/10.1006/jmbi.1999.2913
  27. Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino Si, Shirahata T. 2003. Isolation and characterization of mini-Tn5Km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect. Immun. 71: 3020-3027. https://doi.org/10.1128/IAI.71.6.3020-3027.2003
  28. van Opijnen T, Camilli A. 2013. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11: 435-442. https://doi.org/10.1038/nrmicro3033
  29. Fernandes DM, Baldwin CL. 1995. Interleukin-10 downregulates protective immunity to Brucella abortus. Infect. Immun. 63: 1130-1133.
  30. Fernandez-Lago L, Monte M, Chordi A. 1996. Endogenous gamma interferon and interleukin-10 in Brucella abortus 2308 infection in mice. Pathog. Dis. 15: 109-114.
  31. Stibitz S, Yang M-S. 1991. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J. Bacteriol. 173: 4288-4296. https://doi.org/10.1128/jb.173.14.4288-4296.1991
  32. Briones G, Inon de Iannino N, Roset M, Vigliocco A, Paulo PS, Ugalde RA. 2001. Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells. Infect. Immun. 69: 4528-4535. https://doi.org/10.1128/IAI.69.7.4528-4535.2001
  33. Wei P, Cui G, Lu Q, Yang L, Guan Z, Sun W, et al. 2015. A20 promotes Brucella intracellular growth via inhibition of macrophage cell death and activation. Vet. Microbiol. 175: 50-57. https://doi.org/10.1016/j.vetmic.2014.11.006
  34. Tian M, Qu J, Han X, Ding C, Wang S, Peng D, et al. 2014. Mechanism of Asp24 upregulation in Brucella abortus rough mutant with a disrupted O-Antigen export system and effect of Asp24 in bacterial intracellular survival. Infect. Immun. 82: 2840-2850. https://doi.org/10.1128/IAI.01765-14
  35. Hernandez-Castro R, Verdugo-Rodriguez A, Puente JL, Suarez-Guemes F. 2008. The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells. Microb. Pathog. 44: 28-33. https://doi.org/10.1016/j.micpath.2007.08.008
  36. Grillo M-J, Blasco JM, Gorvel JP, Moriyon I, Moreno E. 2012. What have we learned from brucellosis in the mouse model? Vet. Res. 43: 1. https://doi.org/10.1186/1297-9716-43-1
  37. Wang Y, Chen Z, Qiu Y, Ke Y, Xu J, Yuan X, et al. 2012. Identification of Brucella abortus virulence proteins that modulate the host immune response. Bioengineered 3: 303-305. https://doi.org/10.4161/bioe.21005
  38. Spera JM, Ugalde JE, Mucci J, Comerci DJ, Ugalde RA. 2006. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc. Natl. Acad. Sci. USA 103: 16514-16519. https://doi.org/10.1073/pnas.0603362103
  39. Turner MD, Nedjai B, Hurst T, Pennington DJ. 2014. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843: 2563-2582. https://doi.org/10.1016/j.bbamcr.2014.05.014
  40. Gordon MA, Jack DL, Dockrell DH, Lee ME, Read RC. 2005. Gamma interferon enhances internalization and early nonoxidative killing of Salmonella enterica serovar Typhimurium by human macrophages and modifies cytokine responses. Infect. Immun. 73: 3445-3452. https://doi.org/10.1128/IAI.73.6.3445-3452.2005
  41. Pietila TE, Veckman V, Kyllonen P, Lahteenmaki K, Korhonen TK, Julkunen I. 2005. Activation, cytokine production, and intracellular survival of bacteria in Salmonella-infected human monocyte-derived macrophages and dendritic cells. J. Leukoc Biol. 78: 909-920. https://doi.org/10.1189/jlb.1204721
  42. Chiang CS, Chen FH, Hong JH, Jiang PS, Huang HL, Wang CC, et al. 2008. Functional phenotype of macrophages depends on assay procedures. Int. Immunol. 20: 215-222. https://doi.org/10.1093/intimm/dxm137
  43. Javmen A, Nemeikaite-Ceniene A, Bratchikov M, Grigiskis S, Grigas F, Jonauskiene I, et al. 2015. Beta-glucan from Saccharomyces cerevisiae induces IFN-gamma production in vivo in BALB/c Mice. In Vivo 29: 359-363.
  44. Sanceau J, Wijdenes J, Revel M, Wietzerbin J. 1991. IL-6 and IL-6 receptor modulation by IFN-gamma and tumor necrosis factor-alpha in human monocytic cell line (THP-1). Priming effect of IFN-gamma. J. Immunol. 147: 2630-2637.
  45. Harwood CS, Parales RE. 1996. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590. https://doi.org/10.1146/annurev.micro.50.1.553
  46. Entsch B, Cole LJ, Ballou DP. 2005. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch. Biochem. Biophys. 433: 297-311. https://doi.org/10.1016/j.abb.2004.09.029
  47. Li Z, Wang S, Zhang H, Zhang J, Xi L, Zhang J, et al. 2017. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages. World J. Microbiol. Biotechnol. 33: 60. https://doi.org/10.1007/s11274-017-2230-9
  48. Schulz H, Fabianek RA, Pellicioli EC, Hennecke H, Thöny-Meyer L. 1999. Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB. Proc. Natl. Acad. Sci. USA 96: 6462-6467. https://doi.org/10.1073/pnas.96.11.6462
  49. Daltrop O, Stevens JM, Higham CW, Ferguson SJ. 2002. The CcmE protein of the c-type cytochrome biogenesis system: unusual in vitro heme incorporation into apo-CcmE and transfer from holo-CcmE to apocytochrome. Proc. Natl. Acad. Sci. USA 99: 9703-9708. https://doi.org/10.1073/pnas.152120699
  50. Li Y, Park JS, Deng JH, Bai Y. 2006. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38: 283-291. https://doi.org/10.1007/s10863-006-9052-z
  51. Ow Y-LP, Green DR, Hao Z, Mak TW. 2008. Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9: 532-542.
  52. Hop HT, Reyes AW, Huy TX, Arayan LT, Min W, Lee HJ, et al. 2017. Activation of NF-kB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in raw 264.7 cells. Front. Cell Infect. Microbiol. 7: 437. https://doi.org/10.3389/fcimb.2017.00437
  53. Caron E, Peyrard T, Kohler S, Cabane S, Liautard JP, Dornand J. 1994. Live Brucella spp. fail to induce tumor necrosis factor alpha excretion upon infection of U937-derived phagocytes. Infect. Immun. 62: 5267-5274.
  54. Zhan Y, Cheers C. 1998. Control of IL-12 and IFN-gamma production in response to live or dead bacteria by TNF and other factors. J. Immunol. 161: 1447-1453.
  55. Aravind L, Koonin EV. 1998. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23: 469-472. https://doi.org/10.1016/S0968-0004(98)01293-6
  56. Chuang Y-M, Bandyopadhyay N, Rifat D, Rubin H, Bader JS, Karakousis PC. 2015. Deficiency of the novel exopolyphosphatase Rv1026/PPX2 leads to metabolic downshift and altered cell wall permeability in Mycobacterium tuberculosis. MBio 6: e02428-02414.
  57. Chang YH, Teichert U, Smith JA. 1990. Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae. J. Biol. Chem. 265: 19892-19897.
  58. Baldi PC, Wanke MM, Loza ME, Fossati CA. 1994. Brucella abortus cytoplasmic proteins used as antigens in an ELISA potentially useful for the diagnosis of canine brucellosis. Vet. Microbiol. 41: 127-134. https://doi.org/10.1016/0378-1135(94)90142-2
  59. Goldbaum FA, Velikovsky CA, Baldi PC, Mortl S, Bacher A, Fossati CA. 1999. The 18-kDa cytoplasmic protein of Brucella species -an antigen useful for diagnosis-is a lumazine synthase. J. Med. Microbiol. 48: 833-839. https://doi.org/10.1099/00222615-48-9-833
  60. Vuoristo KS, Mars AE, Sanders JPM, Eggink G, Weusthuis RA. 2016. Metabolic engineering of TCA cycle for production of chemicals. Trends Biotechnol. 34: 191-197. https://doi.org/10.1016/j.tibtech.2015.11.002
  61. Onomoto K, Yoneyama M, Fujita T. 2007. Regulation of antiviral innate immune responses by RIG-I family of RNA helicases. Curr. Top. Microbiol. Immunol. 316: 193-205.
  62. Horrevoets AJ, Fontijn RD, van Zonneveld AJ, de Vries CJ, ten Cate JW, Pannekoek H. 1999. Vascular endothelial genes that are responsive to tumor necrosis factor-alpha in vitro are expressed in atherosclerotic lesions, including inhibitor of apoptosis protein-1, stannin, and two novel genes. Blood 93: 3418-3431.
  63. Camacho-Vanegas O, Till J, Miranda-Lorenzo I, Ozturk B, Camacho SC, Martignetti JA. 2013. Shaking the family tree: identification of novel and biologically active alternatively spliced isoforms across the KLF family of transcription factors. FASEB J. 27: 432-436. https://doi.org/10.1096/fj.12-220319
  64. Peipp M, Wesch D, Oberg HH, Lutz S, Muskulus A, van de Winkel JGJ, et al. 2017. CD20-Specific immunoligands engaging NKG2D enhance gammadelta T cell-mediated lysis of lymphoma cells. Scand. J. Immunol. 86: 196-206. https://doi.org/10.1111/sji.12581
  65. Barrionuevo P, Delpino MV, Pozner RG, Velasquez LN, Cassataro J, Giambartolomei GH. 2013. Brucella abortus induces intracellular retention of MHC-I molecules in human macrophages down-modulating cytotoxic CD8(+) T cell responses. Cell Microbiol. 15: 487-502. https://doi.org/10.1111/cmi.12058

Cited by

  1. The Mechanism of Facultative Intracellular Parasitism of Brucella vol.22, pp.7, 2018, https://doi.org/10.3390/ijms22073673