DOI QR코드

DOI QR Code

The Effect of Temperature on the Photoluminescence Properties of the InZnP/ZnSe/ZnS (Core/Multishell) Quantum Dots

온도에 따른 InZnP/ZnSe/ZnS (핵/다중껍질) 양자점의 형광 특성 변화

  • Son, Min Ji (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Hyunsung (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Younki (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Koo, Eunhae (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bang, Jiwon (Electronic Conversion Materials Division, Korea Institute of Ceramic Engineering and Technology)
  • 손민지 (한국세라믹기술원 전자융합소재본부) ;
  • 정현성 (한국세라믹기술원 전자융합소재본부) ;
  • 이윤기 (경상대학교 나노신소재융합공학과) ;
  • 구은회 (한국세라믹기술원 전자융합소재본부) ;
  • 방지원 (한국세라믹기술원 전자융합소재본부)
  • Received : 2018.08.27
  • Accepted : 2018.09.04
  • Published : 2018.11.01

Abstract

We investigated the temperature-dependent photoluminescence spectroscopy of colloidal InZnP/ZnSe/ZnS (core/shell/shell) quantum dots with varying ZnSe and ZnS shell thickness in the 278~363 K temperature range. Temperature-dependent photoluminescence of the InZnP-based quantum dot samples reveal red-shifting of the photoluminescence peaks, thermal quenching of photoluminescence, and broadening of bandwidth with increasing temperature. The degree of band-gap shifting and line broadening as a function of temperature is affected little by shell composition and thickness. However, the thermal quenching of the photoluminescence is strongly dependent on the shell components. The irreversible photoluminescence quenching behavior is dominant for thin-shell-deposited InZnP quantum dots, whereas thick-shelled InZnP quantum dots exhibit superior thermal stability of the photoluminescence intensity.

Keywords

References

  1. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013 (1998). [DOI: https://doi.org/10.1126/science.281.5385.2013]
  2. J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater., 12, 1102 (2000). [DOI: https://doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J]
  3. J. Owen and L. Brus, J. Am. Chem. Soc., 139, 10939 (2017). [DOI: https://doi.org/10.1021/jacs.7b05267]
  4. Y. Jiang, S. Y. Cho, and M. Shim, J. Mater. Chem. C, 6, 2618 (2018). [DOI: https://doi.org/10.1039/C7TC05972H]
  5. K. S. Cho, K. Heo, C. W. Baik, J. Y. Choi, H. Jeong, S. Hwang, and S. Y. Lee, Nat. Commun., 8, 840 (2017). [DOI: https://doi.org/10.1038/s41467-017-00893-x]
  6. R. Liu, B. P. Bloom, D. H. Waldeck, P. Zhang, and D. N. Beratan, J. Phys. Chem. C, 122, 5924 (2018). [DOI: https://doi.org/10.1021/acs.jpcc.8b00010]
  7. P. T. Snee, R. C. Somers, G. Nair, J. P. Zimmer, M. G. Bawendi, and D. G. Nocera, J. Am. Chem. Soc., 128, 13320 (2006). [DOI: https://doi.org/10.1021/ja0618999]
  8. T. T. Xuan, J. Q. Liu, C. Y. Yu, R. J. Xie, and H. L. Li, Sci. Rep., 6, 24459 (2016). [DOI: https://doi.org/10.1038/srep24459]
  9. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science, 307, 538 (2005). [DOI: https://doi.org/10.1126/science.1104274]
  10. B. Xing, W. Li, X. Wang, H. Dou, L. Wang, K. Sun, X. He, J. Han, H. Xiao, J. Miao, and Y. Li, J. Mater. Chem., 20, 5664 (2010). [DOI: https://doi.org/10.1039/C0JM00221F]
  11. E. Bang, Y. Choi, J. Cho, Y. H. Suh, H. W. Ban, J. S. Son, and J. Park, Chem. Mater., 29, 4236 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b00254]
  12. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, Chem. Mater., 28, 2491 (2016) [DOI: https://doi.org/10.1021/acs.chemmater.5b05044]
  13. W. Shen, H. Tang, X. Yang, Z. Cao, T. Cheng, X. Wang, Z. Tan, J. You, and Z. Deng, J. Mater. Chem. C, 5, 8243 (2017). [DOI: https://doi.org/10.1039/C7TC02927F]
  14. P. Ramasamy, N. Kim, Y. S. Kang, O. Ramirez, and J. S. Lee, Chem. Mater., 29, 6893 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b02204]
  15. P. Ramasamy, K. J. Ko, J. W. Kang, and J. S. Lee, Chem. Mater., 30, 3643 (2018). [DOI: https://doi.org/10.1021/acs.hemmater.8b02049]
  16. F. Pietra, L. D. Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, ACS Nano, 10, 4754 (2016). [DOI: https://doi.org/10.1021/acsnano.6b01266]
  17. F. Pietra, N. Kirkwood, L. D. Trizio, A. W. Hoekstra, L. Kleibergen, N. Renaud, R. Koole, P. Baesjou, L. Manna, and A. J. Houtepen, Chem. Mater., 29, 5192 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.7b00848]
  18. J. P. Park, J. J. Lee, and S. W. Kim, Sci. Rep., 6, 30094 (2016). [DOI: https://doi.org/10.1038/srep30094]
  19. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, Chem. Mater., 23, 4459 (2011). [DOI: https://doi.org/10.1021/cm201550w]
  20. S. M. Lee, C. J. Moon, H. Lim, Y. Lee, M. Y. Choi, and J. Bang, J. Phys. Chem. C, 121, 26054 (2017). [DOI: https://doi.org/10.1021/acs.jpcc.7b06301]
  21. B. Chon, J. Bang, J. Park, C. Jeong, J. H. Choi, J. B. Lee, T. Joo, and S. Kim, J. Phys. Chem. C, 115, 436 (2011). [DOI: https://doi.org/10.1021/jp109229u]
  22. K. P. O'Donnell and X. Chen, Appl. Phys. Lett., 58, 2924 (1998). [DOI: https://doi.org/10.1063/1.104723]
  23. H. Chen, J. He, and S. T. Wu, IEEE J. Sel. Top. Quantum Electron., 23, 1 (2017). [DOI: https://doi.org/10.1109/JSTQE.2017.2649466]
  24. J. Zhang, J. Wang, T. Yan, Y. Peng, D. Xu, and D. Deng, J. Mater. Chem. B, 5, 8152 (2017). [DOI: https://doi.org/10.1039/C7TB02324C]
  25. D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H. Weller, J. Phys. Chem. B, 108, 18826 (2004). [DOI: https://doi.org/10.1021/jp046481g]
  26. X. Peng, J. Wickham, and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998). [DOI: https://doi.org/10.1021/ja9805425]
  27. G. A. Slack, Solid State Phys., 34, 1 (1979). [DOI: https://doi.org/10.1016/S0081-1947(08)60359-8]
  28. Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. M. Donega, and A. Meijerink, ACS Nano, 6, 9058 (2012). [DOI: https://doi.org/10.1021/nn303217q]