참고문헌
- O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis & K. Taha. (2015). Efficient machine learning for big data: A review. Big Data Research, 2(3), 87-93. https://doi.org/10.1016/j.bdr.2015.04.001
- F. Cady. (2017). The data science handbook. Wiley.
- S. Kim & Y. Jeong. (2017). Machine Learning. Seoul : Hanbit Media.
- A. Moore & M. S. Lee. (1988). Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8, 67-91.
- S. Lee. (2017) Artificial Intelligence: Recent Artificial Intelligence Development Trend and Future Evolution Direction. LG Economic Research Institute(Online). http://www.lgeri.com/report/view.do?idx=19584
- Open Data Portal, https://www.data.go.kr/
- Seoul Open Data Plaza, http://data.seoul.go.kr/
- Gyeonggi Data Dream, https://data.gg.go.kr/portal/mainPage.do
- Healthcare Bigdata Hub, http://opendata.hira.or.kr/
- T. Borovicka, M. Jirina Jr, P. Kordik & M. Jirina. (2012). Selecting representative data sets. Advances in data mining knowledge discovery and applications, InTech. 43-70.
- A. Ferrari, G. O. Spagnolo & S. Gnesi. (2017). Towards a Dataset for Natural Language Requirements Processing, Proceedings of International Working Conference on Requirements Engineering: Foundation for Software Quality.
- ICT Standardization Strategy Map ver.2018. (2017). Telecommunications Technology Association.
- TTAK.KO-10.0974, Big Data - Definition, Concept and Use Cases of Data Providing Service, TTA Standards. (2016)
- TTAK.KO-10.0975, Big Data - Requriements and Functional Architecture for Data Providing Service. TTA Standards, 2016.
- ITU-T SG20 TR.AI4IoT, Artificial Intelligence and Internet of Thing (work in progress), 2018
- ISO/IEC AWI TR 20547-1, Information technology -- Big data reference architecture -- Part 1: Framework and application process
- ISO/IEC AWI 22989, Artificial Intelligence Concepts and Terminology (work in progress),
- ISO/IEC AWI 23053, Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML) (work in progress)
- List of datasets for machine learning research, https://en.wikipedia.org/wiki/List_of_datasets_for_machine_learning_research, Wikipedia, 2018.
- T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, & P. Lamere. (2011). The Million Song Dataset. Proceedings of the 12th International Society for Music Information Retrieval Conference, 2(9), 591-596.
- S. J. Raudys & A. K. Jain. (1991). Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Transactions on Pattern Analysis & Machine Intelligence, 13(3), 252-264. https://doi.org/10.1109/34.75512
- G. Pant, P. Srinivasan & F. Menczer. (2004). Crawling the web. Web Dynamics, 153-177.
- J. Morcos, Z. Abedjan, I. F. Ilyas, M. Ouzzani, P. Papotti & M. Stonebraker. (2015). Dataxformer: An interactive data transformation tool. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 883-888.
- Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan & H. V. Jagadish. (2008). Regular expression learning for information extraction. Proceedings of the Conference on Empirical Methods in Natural Language Processing, 21-30.
- I. Guyon & A. Elisseeff. (2006). An introduction to feature extraction. In Feature extraction. Springer, 1-25.
- T. Fushiki. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21(2), 137-146. https://doi.org/10.1007/s11222-009-9153-8