DOI QR코드

DOI QR Code

Activin A/BMP2 Chimera (AB204) Exhibits Better Spinal Bone Fusion Properties than rhBMP2

  • Ryu, Dalsung (Department of Neurosurgery, Inha University College of Medicine) ;
  • Yoon, Byung-Hak (Protein Engineering Laboratory, joint Center for Biosciences at Songdo Global University) ;
  • Oh, Chang-Hyun (Department of Neurosurgery, Inha University College of Medicine) ;
  • Kim, Moon-Hang (Department of Physiology, Inha University College of Medicine) ;
  • Kim, Ji-Yong (Department of Neurosurgery, Inha University College of Medicine) ;
  • Yoon, Seung Hwan (Department of Neurosurgery, Inha University College of Medicine) ;
  • Choe, Senyon (Protein Engineering Laboratory, joint Center for Biosciences at Songdo Global University)
  • Received : 2017.11.27
  • Accepted : 2018.02.20
  • Published : 2018.11.01

Abstract

Objective : To compare the spinal bone fusion properties of activin A/BMP2 chimera (AB204) with recombinant human bone morphogenetic protein (rhBMP2) using a rat posterolateral spinal fusion model. Methods : The study was designed to compare the effects and property at different dosages of AB204 and rhBMP2 on spinal bone fusion. Sixty-one male Sprague-Dawley rats underwent posterolateral lumbar spinal fusion using one of nine treatments during the study, that is, sham; osteon only; $3.0{\mu}g$, $6.0{\mu}g$, or $10.0{\mu}g$ of rhBMP2 with osteon; and $1.0{\mu}g$, $3.0{\mu}g$, $6.0{\mu}g$, or $10.0{\mu}g$ of AB204 with osteon. The effects and property on spinal bone fusion was calculated at 4 and 8 weeks after treatment using the scores of physical palpation, simple radiograph, micro-computed tomography, and immunohistochemistry. Results : Bone fusion scores were significantly higher for $10.0{\mu}g$ AB204 and $10.0{\mu}g$ rhBMP2 than for osteon only or $1.0{\mu}g$ AB204. AB204 exhibited more prolonged osteoblastic activity than rhBMP2. Bone fusion properties of AB204 were similar with the properties of rhBMP2 at doses of 6.0 and $10.0{\mu}g$, but, the properties of AB204 at doses of $3.0{\mu}g$ exhibited better than the properties of rhBMP2 at doses of $3.0{\mu}g$. Conclusion : AB204 chimeras could to be more potent for treating spinal bone fusion than rhBMP2 substitutes with increased osteoblastic activity for over a longer period.

Keywords

References

  1. Allendorph GP, Read JD, Kawakami Y, Kelber JA, Isaacs MJ, Choe S : Designer $TGF{\beta}$ superfamily ligands with diversified functionality. PLoS One 6 : e26402, 2011 https://doi.org/10.1371/journal.pone.0026402
  2. Allendorph GP, Vale WW, Choe S : Structure of the ternary signaling complex of a $TGF-{\beta}$ superfamily member. Proc Natl Acad Sci U S A 103 : 7643-7648, 2006 https://doi.org/10.1073/pnas.0602558103
  3. Bhatt RA, Rozental TD : Bone graft substitutes. Hand Clin 28 : 457-468, 2012 https://doi.org/10.1016/j.hcl.2012.08.001
  4. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, et al. : Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280 : 25111-25118, 2005 https://doi.org/10.1074/jbc.M503328200
  5. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. : Bone substitutes in orthopaedic surgery: From basic science to clinical practice. J Mater Sci Mater Med 25 : 2445-2461, 2014 https://doi.org/10.1007/s10856-014-5240-2
  6. Chen Y, Bhushan A, Vale W : Smad8 mediates the signaling of the ALK-2 [corrected] receptor serine kinase. Proc Natl Acad Sci U S A 94 : 12938-12943, 1997 https://doi.org/10.1073/pnas.94.24.12938
  7. Derynck R, Miyazono K : The tgf-[beta] family. CSHL Press 50 : 29-43, 2008
  8. Gray PC, Greenwald J, Blount AL, Kunitake KS, Donaldson CJ, Choe S, et al. : Identification of a binding site on the type ii activin receptor for activin and inhibin. J Biol Chem 275 : 3206-3212, 2000 https://doi.org/10.1074/jbc.275.5.3206
  9. Greenwald J, Groppe J, Gray P, Wiater E, Kwiatkowski W, Vale W, et al. : The BMP7/actrii extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol Cell 11 : 605-617, 2003 https://doi.org/10.1016/S1097-2765(03)00094-7
  10. Greenwald J, Vega ME, Allendorph GP, Fischer WH, Vale W, Choe S : A flexible activin explains the membrane-dependent cooperative assembly of $TGF-{\beta}$ family receptors. Mol Cell 15 : 485-489, 2004 https://doi.org/10.1016/j.molcel.2004.07.011
  11. Han X, Zhang W, Gu J, Zhao H, Ni L, Han J, et al. : Accelerated posterolateral spinal fusion by collagen scaffolds modified with engineered collagen-binding human bone morphogenetic protein-2 in rats. PLoS One 9 : e98480, 2014 https://doi.org/10.1371/journal.pone.0098480
  12. Joseph V, Rampersaud YR : Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine (Phila Pa 1976) 32 : 2885-2890, 2007 https://doi.org/10.1097/BRS.0b013e31815b7596
  13. Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, et al. : BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development 135 : 3801-3811, 2008 https://doi.org/10.1242/dev.025825
  14. Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, et al. : Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 14 : 5961-5974, 1994 https://doi.org/10.1128/MCB.14.9.5961
  15. Latzman JM, Kong L, Liu C, Samadani U : Administration of human recombinant bone morphogenetic protein-2 for spine fusion may be associated with transient postoperative renal insufficiency. Spine (Phila Pa 1976) 35 : E231-E237, 2010 https://doi.org/10.1097/BRS.0b013e3181c71447
  16. Lu J, Bhargav D, Wei AQ, Diwan A : Posterolateral intertransverse spinal fusion possible in osteoporotic rats with BMP-7 in a higher dose delivered on a composite carrier. Spine (Phila Pa 1976) 33 : 242-249, 2008 https://doi.org/10.1097/BRS.0b013e318162451b
  17. MassagueJ, Weis-Garcia F : Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals. Cancer Surv 27 : 41-64, 1996
  18. Mesfin A, Buchowski JM, Zebala LP, Bakhsh WR, Aronson AB, Fogelson JL, et al. : High-dose rhBMP-2 for adults: major and minor complications: a study of 502 spine cases. J Bone Joint Surg Am 95 : 1546-1553, 2013 https://doi.org/10.2106/JBJS.L.01730
  19. Miron R, Zhang Y : Osteoinduction: a review of old concepts with new standards. J Dent Res 91 : 736-744, 2012 https://doi.org/10.1177/0022034511435260
  20. Miyazaki M, Morishita Y, He W, Hu M, Sintuu C, Hymanson HJ, et al. : A porcine collagen-derived matrix as a carrier for recombinant human bone morphogenetic protein-2 enhances spinal fusion in rats. Spine J 9 : 22-30, 2009 https://doi.org/10.1016/j.spinee.2008.08.009
  21. Nishimura R, Kato Y, Chen D, Harris SE, Mundy GR, Yoneda T : Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem 273 : 1872-1879, 1998 https://doi.org/10.1074/jbc.273.4.1872
  22. Park BH, Song KJ, Yoon SJ, Park HS, Jang KY, Zhou L, et al. : Acceleration of spinal fusion using COMP-angiopoietin 1 with allografting in a rat model. Bone 49 : 447-454, 2011 https://doi.org/10.1016/j.bone.2011.05.020
  23. Pimenta L, Marchi L, Oliveira L, Coutinho E, Amaral R : A prospective, randomized, controlled trial comparing radiographic and clinical outcomes between stand-alone lateral interbody lumbar fusion with either silicate calcium phosphate or rh-BMP2. J Neurol Surg A Cent Eur Neurosurg 74 : 343-350, 2013 https://doi.org/10.1055/s-0032-1333420
  24. Pryor LS, Gage E, Langevin C-J, Herrera F, Breithaupt AD, Gordon CR, et al. : Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2 : 151-160, 2009 https://doi.org/10.1055/s-0029-1224777
  25. Schlickewei W, Schlickewei C : The use of bone substitutes in the treatment of bone defects-the clinical view and history. Macromol Symp 253 : 10-23, 2007 https://doi.org/10.1002/masy.200750702
  26. ten Dijke P, Franzen P, Yamashita H, Ichijo H, Heldin CH, Miyazono K : Serine/threonine kinase receptors. Prog Growth Factor Res 5 : 55-72, 1994 https://doi.org/10.1016/0955-2235(94)90017-5
  27. Thompson TB, Woodruff TK, Jardetzky TS : Structures of an ActRiiB: activin A complex reveal a novel binding mode for $TGF-{\beta}$ ligand: receptor interactions. EMBO J 22 : 1555-1566, 2003 https://doi.org/10.1093/emboj/cdg156
  28. Wang JC, Kanim LE, Yoo S, Campbell PA, Berk AJ, Lieberman JR : Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 85-A : 905-911, 2003
  29. Yoon BH, Esquivies L, Ahn C, Gray PC, Ye Sk, Kwiatkowski W, et al. : An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2. J Bone Miner Res 29 : 1950-1959, 2014 https://doi.org/10.1002/jbmr.2238
  30. Zhu W, Rawlins BA, Boachie-Adjei O, Myers ER, Arimizu J, Choi E, et al. : Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J Bone Miner Res 19 : 2021-2032, 2004 https://doi.org/10.1359/jbmr.040821
  31. Zimmerman C, Mathews L : Activin receptors: Cellular signalling by receptor serine kinases. Macromol Symp 253 : 10-23, 2007 https://doi.org/10.1002/masy.200750702

Cited by

  1. Lumbar interbody fusion: recent advances in surgical techniques and bone healing strategies vol.30, pp.1, 2018, https://doi.org/10.1007/s00586-020-06596-0
  2. A novel rat model of interbody fusion based on anterior lumbar corpectomy and fusion (ALCF) vol.22, pp.1, 2018, https://doi.org/10.1186/s12891-021-04822-4