DOI QR코드

DOI QR Code

Thermal Decomposition Behavior of Liquid Crystalline Epoxy-Based Composites

열경화성 액정 에폭시 매트릭스 복합재료의 열분해 거동 비교

  • Park, Jonghyun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Cho, Seung Hyun (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 박종현 (숭실대학교 유기신소재.파이버공학과) ;
  • 조승현 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2018.08.20
  • Accepted : 2018.10.01
  • Published : 2018.10.31

Abstract

Thermosetting liquid crystalline epoxy is an epoxy polymer that forms a liquid crystalline network structure upon curing. 4,4'-Diglycidyloxybiphenyl with an aromatic rigid-rod part such as a biphenyl group exhibits liquid crystallinity. Biphenol epoxy resin (BP), which is cured by using sulfanilamide, forms a liquid crystalline network by reacting the amine and epoxy ring of sulfanilamide and biphenol. In this experiment, silicon nitride (Si3N4) or aluminum nitride (AlN) was used as a filler. The activation energy required for the decomposition was calculated using the Kissinger method and the Flynn-wall method to confirm the thermal properties of the thermosetting liquid crystalline epoxy with silicon nitride. As a result, the activation energy required for decomposition of the composite increased with increasing silicon nitride content, and it was confirmed that silicon nitride increased the thermal stability of the thermosetting liquid crystalline epoxy.

Keywords

References

  1. Y. Kim, J. Jung, H. Yeo, N.-H. You, S. G. Jang, S. Ahn, S. H. Lee, and M. J. Goh, "Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites", J. Kor. Soc. Compos. Mat., 2017, 30, 1-6.
  2. H. J. Moon, K. H. Kim, S. Hwangbo, and S. H. Cho, "Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler", Text. Sci. Eng., 2016, 52, 206-214.
  3. H. Lee and N. Kris, "Handbook of Epoxy Resins", McGrawHill, New York, 1982.
  4. Y. Takezawa, “High Thermal Conductivity Liquid Crystalline Epoxy Resin”, Expected Materials for the Future (Japan), 2007, 7, 28-34.
  5. M. Harada, N. Hamaura, M. Ochi, and Y. Agari, “Theraml Conductivity of Liquid Crystalline Epoxy/BN Filler Composites having Ordered Network Structure”, Composites: Part B, 2013, 55, 306-313. https://doi.org/10.1016/j.compositesb.2013.06.031
  6. M. Akatsuka and Y. Takezawa, "Study of High Thermal Conductive Epoxy Resins Containg Controlled High-order Structures", J. Appl. Polym. Sci., 2003, 89, 2464-2467. https://doi.org/10.1002/app.12489
  7. G. G. Barklay, S. G. McNames, C. K. Ober, K. I. Papathomas, and D. W. Wang, "The Mechanical and Magnetic Alignment of Liquid Crystalline Epoxy Thermoset", J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 1845-1853. https://doi.org/10.1002/pola.1992.080300907
  8. M. Harada, M. Ochi, M. Tobita, T. Kimura, T. Ishigaki, N. Shimoyama, and H. Aoki, "Thermal-conductivity Properties of Liquid-crystalline Epoxy Resin Cured under a Magnetic Field", J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 1739-1743. https://doi.org/10.1002/polb.10531
  9. Y. Oh, B. I. You, J. H. Ahn, and G. W. Lee, "Investigation of Thermal Stability of Epoxy Composite Reinforced with Multiwalled Carbon Nanotubes and Micrometersized Silica Particles", J. Korean Soc. Compos. Mater., 2016, 29, 306-314.
  10. X. Wu, P. Jiang, Y. Zhou, J. Yu, F. Zhang, L. Dong, and Y. Yin, "Influence of Alumina Content and Thermal Treatment on the Thermal Conductivity of $UPE/Al_2O_3$ Composite", J. Appl. Polym. Sci., 2014, 131, 40528.
  11. M. Donnay, S. Tzawalas, and E. Logakis, "Boron Nitride Filled Epoxy with Improved Thermal Conductivity and Dielectric Breakdown Strength", Compos. Sci. Tech., 2015, 441, 152-158.
  12. H. J. Moon, K. H. Kim, S. Hwangbo, and S. H. Cho, "Thermal Decomposition Behavior of LCT Composites with Modified Zirconia Filler", Text. Sci. Eng., 2016, 53, 293-298. https://doi.org/10.12772/TSE.2016.53.293
  13. G. C. Huang, C. H. Lee, and J. K. Lee, “Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites”, Polymer (Korea), 2009, 33, 530-536.
  14. H. Hayashi, “High Thermal Conductivity of Silicon Nitride”, Functional Materials, 2008, 28, 27-32.
  15. K. S. Lee and D. K. Kim, "Study on the Contact Damage in Silicon Nitride Bilayer", J. Am. Ceram. Soc., 1998, 81, 571-580.
  16. K. S. Lee, S. K. Lee, B. R. Lawn, and D. K. Kim, "Contact Damage and Strength Degradation in Brittle/Quasi-Plastic Silicon Nitride Bilayers", J. Am. Ceram. Soc., 1998, 81, 2394-2404.
  17. R. Lee, “Development of High Thermal Conductivity Aluminum Nitride Ceramic”, J. Am. Ceramic, 1991, 74, 2242-2249. https://doi.org/10.1111/j.1151-2916.1991.tb08291.x
  18. W. F. A. Su, K. C. Chen, and S. Y. Tseng, "Effects of Chemical Structure Changes on Thermal, Mechanical, and Crystalline Properties of Rigid Rod Epoxy Resins", J. Appl. Polym. Sci., 2000, 78, 446-451. https://doi.org/10.1002/1097-4628(20001010)78:2<446::AID-APP250>3.0.CO;2-W
  19. S. Hwangbo and S. H. Cho, "Thermal Decomposition Behavior of LCT Composites Using Boron Nitride Filler", Text. Sci. Eng., 2018, 55, 35-40.
  20. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Anal. Chem., 1957, 29, 1702-1706. https://doi.org/10.1021/ac60131a045
  21. J. H. Flynn and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data", Polym. Lett., 1966, 4, 323-328. https://doi.org/10.1002/pol.1966.110040504
  22. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, "Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis", Polym. Degrad. Stab., 2008, 93, 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  23. J. S. Oh, J. M. Lee, and W. S. Ahn, “Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites”, Polymer (Korea), 2009, 33, 435-440.
  24. https://www.sigmaaldrich.com