DOI QR코드

DOI QR Code

Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development

  • Park, Chan Ho (Department of Life Science, Chung-Ang University) ;
  • Roh, Jeehee (Department of Life Science, Chung-Ang University) ;
  • Youn, Ji-Hyun (Department of Life Science, Chung-Ang University) ;
  • Son, Seung-Hyun (Department of Life Science, Chung-Ang University) ;
  • Park, Ji Hye (Department of Biological Science, Andong National University) ;
  • Kim, Soon Young (Department of Biological Science, Andong National University) ;
  • Kim, Tae-Wuk (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Kim, Seong-Ki (Department of Life Science, Chung-Ang University)
  • Received : 2018.03.02
  • Accepted : 2018.08.21
  • Published : 2018.10.31

Abstract

Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.

Keywords

References

  1. Aloni, R., Schwalm, K., Langhans, M., and Ullrich, C. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216, 841-853.
  2. Alonso, J.M. and Ecker, J.R. (2001). The ethylene pathway: A paradigm for plant hormone signaling and interaction. Sci STKE 2001: RE1.
  3. Barry, C.S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A.J., and Grierson, D. (1996). Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J. 9, 525-535. https://doi.org/10.1046/j.1365-313X.1996.09040525.x
  4. Barry, C.S., Llop-Tous, M.I., and Grierson, D. (2000). The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123, 979-986. https://doi.org/10.1104/pp.123.3.979
  5. Beaudoin, N., Serizet, C., Gosti, F., and Giraudat, J. (2000). Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12, 1103-1115. https://doi.org/10.1105/tpc.12.7.1103
  6. Booker, M.A., and DeLong, A. (2015). Producing the ethylene signal: regulation and diversification of ethylene biosynthetic enzymes. Plant Physiol. 169, 42-50. https://doi.org/10.1104/pp.15.00672
  7. Bradford, K.J., and Yang, S.F. (1980). Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol. 65, 322-326. https://doi.org/10.1104/pp.65.2.322
  8. Buer, C.S., Sukumar, P., and Muday, G.K. (2006). Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol. 140, 1384-1396. https://doi.org/10.1104/pp.105.075671
  9. Chae, H.S., Faure, F., and Kieber, J.J. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15, 545-559. https://doi.org/10.1105/tpc.006882
  10. Chang, S.C., Kim, Y.-S., Lee, J.Y., Kaufman, P.B., Kirakosyan, A., Yun, H.S., Kim, T.-W., Kim, S.Y., Cho, M.H., Lee, J.S., and Kim, S.-K. (2004). Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol. Plantarum 121, 666-673. https://doi.org/10.1111/j.0031-9317.2004.00356.x
  11. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  12. Dugardeyn, J., Vandenbussche, F., and Van Der Straeten, D. (2008). To grow or not to grow: what can we learn on ethylene-gibberellin cross-talk by in silico gene expression analysis?. J. Exp. Bot. 59, 1-16.
  13. Edelmann, H.G., Sabovljevic, A., Njio, G., and Roth, U. (2005). The role of auxin and ethylene for gravitropic differential growth of coleoptiles and roots of rye- and maize seedlings. Adv. Space Res. 36, 1167-1174. https://doi.org/10.1016/j.asr.2005.01.078
  14. Garcia, M.J., Lucena, C., Romera, F.J., Alcantara, E., and Perez-Vicente, R. (2010). Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 61, 3885-3899. https://doi.org/10.1093/jxb/erq203
  15. Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and McCourt, P. (2000). Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12, 1117-1126. https://doi.org/10.1105/tpc.12.7.1117
  16. Gomez-Lim, M.A., Valdes-Lopez, V., Cruz-Hernandez, A., and Saucedo-Arias, L.J. (1993). Isolation and characterization of a gene involved in ethylene biosynthesis from Arabidopsis thaliana. Gene 134, 217-221. https://doi.org/10.1016/0378-1119(93)90096-L
  17. Iwamoto, M., Baba-Kasai, A., Kiyota, S., Hara, N., and Takano, M. (2010). ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice. Plant Cell Environ. 33, 805-815.
  18. Kende, H. and Zeevaart, J.A.D. (1997). The five "classical" plant hormones. Plant Cell 9, 1197-1210. https://doi.org/10.1105/tpc.9.7.1197
  19. Lasserre, E., Bouquin, T., Hernandez, J., Pech, J., Balague, C., and Bull, J. (1996). Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.). Mol. Gen. Genet. 251, 81-90.
  20. Lewis, D.R., Miller, N.D., Splitt, B.L., Wu, G., and Spalding, E.P. (2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19, 1838-1850. https://doi.org/10.1105/tpc.107.051599
  21. Lewis, D.R., Negi, S., Sukumar, P., and Muday, G.K. (2011). Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138, 3485-3495. https://doi.org/10.1242/dev.065102
  22. Li, Z., Peng, J., Wen, X., and Guo, H. (2013). ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25, 3311-3328. https://doi.org/10.1105/tpc.113.113340
  23. Linkies, A., Muller, K., Morris, K., Tureckova, V., Wenk, M., Cadman, C.S.C., Corbineau, F., Strnad, M., Lynn, J.R., Finch-Savage, W.E., and Leubner-Metzger, G. (2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using lepidium sativum and Arabidopsis thaliana. Plant Cell 21, 3803-3822. https://doi.org/10.1105/tpc.109.070201
  24. Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stressresponsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399. https://doi.org/10.1105/tpc.104.026609
  25. Martinez-Garcia, J.F., Huq, E., and Quail, P.H. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859-863. https://doi.org/10.1126/science.288.5467.859
  26. Maunders, M.J., Holdsworth, M.J., Slater, A., Knapp, J.E., Bird, C.R., Schuch, W., and Grierson, D. (1987). Ethylene stimulates the accumulation of ripening-related mRNAs in tomatoes. Plant Cell Environ. 10, 177-184.
  27. Mazzella, M.A., Arana, M.V., Staneloni, R.J., Perelman, S., Rodriguez Batiller, M.J., Muschietti, J., Cerdan, P.D., Chen, K., Sanchez, R.A., Zhu, T., Chory, J., and Casal, J.J. (2005). Phytochrome control of the Arabidopsis transcriptome anticipates seedling exposure to light. Plant Cell 17, 2507-2516. https://doi.org/10.1105/tpc.105.034322
  28. Oh, E., Zhu, J.-Y., and Wang, Z.-Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14, 802-809. https://doi.org/10.1038/ncb2545
  29. Oh, E., Zhu, J.-Y., Bai, M.-Y., Arenhart, R.A., Sun, Y., and Wang, Z.-Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife 3: e03031. https://doi.org/10.7554/eLife.03031
  30. Okushima, Y., Fukaki, H., Onoda, M., Theologis, A., and Tasaka, M. (2007). ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19, 118-130. https://doi.org/10.1105/tpc.106.047761
  31. Park, C.H., Kim, T.-W., Son, S.-H., Hwang, J.-Y., Lee, S.C., Chang, S. C., Kim, S.-H., Kim, S.W., and Kim, S.-K. (2010). Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71, 380-387. https://doi.org/10.1016/j.phytochem.2009.11.003
  32. Picton, S., Barton, S.L., Bouzayen, M., Hamilton, A.J., and Grierson, D. (1993). Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J. 3, 469-481. https://doi.org/10.1111/j.1365-313X.1993.tb00167.x
  33. Qin, Y.-M., Hu, C.-Y., Pang, Y., Kastaniotis, A.J., Hiltunen, J.K., and Zhu, Y.-X. (2007). Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19, 3692-3704. https://doi.org/10.1105/tpc.107.054437
  34. Rudus, I., Sasiak, M., and Kepczynski, J. (2013). Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiol. Plant 35, 295-307. https://doi.org/10.1007/s11738-012-1096-6
  35. Skottke, K.R., Yoon, G.M., Kieber, J.J., and DeLong, A. (2011). Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet. 7: e1001370. https://doi.org/10.1371/journal.pgen.1001370
  36. Sukumar, P., Edwards, K.S., Rahman, A., DeLong, A., and Muday, G.K. (2009). PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol. 150, 722-735. https://doi.org/10.1104/pp.108.131607
  37. Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., He, J.-X., Bai, M.-Y., Zhu, S., Oh, E., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19, 765-777. https://doi.org/10.1016/j.devcel.2010.10.010
  38. Thain, S.C., Vandenbussche, F., Laarhoven, L.J.J., Dowson-Day, M.J., Wang, Z.-Y., Tobin, E.M., Harren, F.J.M., Millar, A.J., and Van Der Straeten, D. (2004). Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol. 136, 3751-3761. https://doi.org/10.1104/pp.104.042523
  39. Tsuchisaka, A., Yu, G., Jin, H., Alonso, J.M., Ecker, J.R., Zhang, X., Gao, S., and Theologis, A. (2009). A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183, 979-1003. https://doi.org/10.1534/genetics.109.107102
  40. Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1999). Dimerization and DNA binding of auxin response factors. Plant J. 19, 309-319. https://doi.org/10.1046/j.1365-313X.1999.00538.x
  41. Van de Poel, B., and Van Der Straeten, D. (2014). 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front. Plant Sci.5: 640.
  42. Vriezen, W.H., Hulzink, R., Mariani, C., and Voesenek, L.A. (1999). 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. Plant Physiol. 121, 189-196. https://doi.org/10.1104/pp.121.1.189
  43. Weigel, D., and Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).
  44. Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W.F., Harden, L.A., and Theologis, A. (2003). Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J. Biol. Chem. 278, 49102-49112. https://doi.org/10.1074/jbc.M308297200
  45. Yang, S.F., and Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
  46. Ye, L., Li, L., Wang, L., Wang, S., Li, S., Du, J., Zhang, S., and Shou, H. (2015). MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Front. Plant Sci.6, 953.
  47. Yi, H.C., Joo, S., Nam, K.H., Lee, J.S., Kang, B.G., and Kim, W.T. (1999). Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol. 41, 443-454. https://doi.org/10.1023/A:1006372612574
  48. Yoon, G.M., and Kieber, J.J. (2013). 14-3-3 Regulates 1-Aminocyclopropane-1-Carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25, 1016-1028. https://doi.org/10.1105/tpc.113.110106
  49. Yun, H.R., Joo, S.-H., Park, C.H., Kim, S.-K., Chang, S.C., and Kim, S.Y. (2009). Effects of brassinolide and IAA on ethylene production and elongation in maize primary roots. J. Plant Biol. 52, 268-274. https://doi.org/10.1007/s12374-009-9032-z

Cited by

  1. CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.00600
  2. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene vol.10, pp.None, 2018, https://doi.org/10.3389/fpls.2019.00695
  3. BES1 directly binds to the promoter of the ACC oxidase 1 gene to regulate gravitropic response in the roots of Arabidopsis thaliana vol.15, pp.1, 2018, https://doi.org/10.1080/15592324.2019.1690724
  4. The TuMYB46LTuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew vol.225, pp.6, 2018, https://doi.org/10.1111/nph.16305
  5. Brassinosteroids signaling via BZR1 down-regulates expression of ACC oxidase 4 to control growth of Arabidopsis thaliana seedlings vol.15, pp.4, 2018, https://doi.org/10.1080/15592324.2020.1734333
  6. The regulation of ethylene biosynthesis: a complex multilevel control circuitry vol.229, pp.2, 2018, https://doi.org/10.1111/nph.16873
  7. BES1 negatively regulates the expression of ACC oxidase 2 to control the endogenous level of ethylene in Arabidopsis thaliana vol.16, pp.2, 2021, https://doi.org/10.1080/15592324.2020.1850625
  8. Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins vol.118, pp.47, 2018, https://doi.org/10.1073/pnas.2109332118
  9. Stablization of ACOs by NatB mediated N-terminal acetylation is required for ethylene homeostasis vol.21, pp.1, 2018, https://doi.org/10.1186/s12870-021-03090-7