DOI QR코드

DOI QR Code

Investigation of influence of homogenization models on stability and dynamic of FGM plates on elastic foundations

  • Mehala, Tewfik (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Belabed, Zakaria (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Beg, O. Anwar (Aeronautical and Mechanical Engineering, University of Salford)
  • Received : 2018.01.23
  • Accepted : 2018.06.12
  • Published : 2018.10.30

Abstract

In this paper, the effect of the homogenization models on buckling and free vibration is presented for simply supported functionally graded plates (FGM) resting on elastic foundation. The majority of investigations developed in the last decade, explored the Voigt homogenization model to predict the effective proprieties of functionally graded materials at the macroscopic-scale for FGM mechanical behavior. For this reason, various models have been used to derive the effective proprieties of FGMs and simulate thereby their effects on the buckling and free vibration of FGM plates based on comparative studies that may differ in terms of several parameters. The refined plate theory, as used in this paper, is based on dividing the transverse displacement into both bending and shear components. This leads to a reduction in the number of unknowns and governing equations. Furthermore the present formulation utilizes a sinusoidal variation of displacement field across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the buckling and free vibration analysis are obtained for simply supported plates. The obtained results are compared with those predicted by other plate theories. This study shows the sensitivity of the obtained results to different homogenization models and that the results generated may vary considerably from one theory to another. Comprehensive visualization of results is provided. The analysis is relevant to aerospace, nuclear, civil and other structures.

Keywords

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civ. Struct. Environ., 4(2), 59-64.
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031
  5. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  6. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4). 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  7. Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
  8. Behravan Rad, A. (2015), "Thermo-elastic analysis of functionally graded circular plates resting on a gradient hybrid foundation", Appl. Math. Comput., 256, 276-298.
  9. Behravan, R. (2012), "Static response of 2-D functionally graded circular plate with gradient thickness and elastic foundations to compound loads", Struct. Eng. Mech., 44(2), 139-161. https://doi.org/10.12989/sem.2012.44.2.139
  10. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/EAS.2018.14.2.103
  11. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  12. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  13. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017b), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  14. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  15. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  16. Benyoucef, S., Mechab, I., Tounsi, A., Fekrar, A., Ait Atmane, H. and Adda Bedia, E.A. (2010), "Bending of thick functionally graded plates resting on Winkler-Pasternak elastic foundations", Mech. Compos. Mater., 46(4), 425-434. https://doi.org/10.1007/s11029-010-9159-5
  17. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  18. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  19. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/SEM.2016.58.3.397
  20. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  21. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  22. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  23. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  24. Cho, J.R. and Ha, D.Y. (2001), "Averaging and finite-element discretization approaches in the numerical analysis of functionally graded materials", Mater. Sci. Eng., 302(2), 187-196. https://doi.org/10.1016/S0921-5093(00)01835-9
  25. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  26. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  27. Feldman, E. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1-4) , 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X
  28. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018
  29. Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.A.L.S. (2005), "Static analysis of functionally graded plates third-order shear deformation theory and a meshless method", Compos. Struct., 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003
  30. Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
  31. Gasik, M. and Lilius, R. (1994), "Evaluation of properties of WCu functional gradient materials by micromechanical model", Comput. Mater. Sci., 3(1), 41-49. https://doi.org/10.1016/0927-0256(94)90151-1
  32. Gasik, M.M. (1998), "Micromechanical modeling of functionally graded materials", Comput. Mater. Sci., 13(1-3), 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5
  33. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/SCS.2015.18.1.235
  34. Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solids, 11(2),127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  35. Hazanov, S. (1998), "Hill condition and overall properties of composites", Arch. Appl. Mech., 68(6), 385-394. https://doi.org/10.1007/s004190050173
  36. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  37. Hill, R. (1963), "Elastic properties of reinforced solids: Some theoretical principles", J. Mech. Phys. Solids, 11(5), 357-372. https://doi.org/10.1016/0022-5096(63)90036-X
  38. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/SEM.2018.65.5.621
  39. Kant, T. and Khare, R.K. (1997), "A higher-order facet quadrilateral composite shell element", Int. J. Numer. Meth. Eng., 40, 4477-4499.
  40. Kant, T. and Pandya, B. (1988), "A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates", Compos. Struct., 9(3), 215-246. https://doi.org/10.1016/0263-8223(88)90015-3
  41. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
  42. Karami, B., Shahsavari, D. and Janghorban, M. (2017), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057.
  43. Karami, B., Janghorban, M. and Li., L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronaut., 143, 380-390. https://doi.org/10.1016/j.actaastro.2017.12.011
  44. Karami, B., Shahsavari, D. and Li., L. (2018b), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stresses, 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781
  45. Karami, B., Shahsavari, D., Li., L., Karami, M. and Janghorban, M. (2018c), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 0954406218756451.
  46. Koizumi, M. (1993), "Concept of FGM", Ceramic Tran., 34, 3-10.
  47. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
  48. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425
  49. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation-Part 2: Laminated plates", J. Appl. Mech., 44, 669-674. https://doi.org/10.1115/1.3424155
  50. Mahdavian, M. (2009), "Buckling analysis of simply-supported functionally graded rectangular plates under non-uniform inplane compressive loading", J. Solid Mech., 1, 213-225.
  51. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  52. Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
  53. Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "Levy solution for buckling analysis of functionally graded rectangular plates", Appl. Compos. Mater., 17(2), 81-93. https://doi.org/10.1007/s10443-009-9100-z
  54. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  55. Nelson, R.B. and Lorch, D.R. (1974) "A refined theory for laminated orthotropic plates", J. Appl. Mech., 41(1), 177-184. https://doi.org/10.1115/1.3423219
  56. Othman, M.I.A., Lotfy, K., Said, S.M. and Anwar Beg, O. (2012) "Wave propagation in a fiber-reinforced micropolar thermoelastic medium with voids using three models", Int. J. Appl. Math. Mech., 8(12), 52-69.
  57. Paulino, G.H., Jin, Z.H. and Dodds Jr., R.H. (2003), Comprehensive Structural Integrity, Volume 2: Fundamental Theories and Mechanisms of Failure, Elsevier Science, 607-644.
  58. Rad, A.B., Farzan-Rad, M.R. and Majd, K.M. (2017), "Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force", Struct. Eng. Mech., 64(5), 591-610. https://doi.org/10.12989/SEM.2017.64.5.591
  59. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  60. Reissner, E. (1945), "Reflection on the theory of elastic plates", J. Appl. Mech., 38(11), 1453-1464.
  61. Reiter, T. and Dvorak, G.J. (1997), "Micromechanical models for graded composite materials", J. Mech. Phys. Solids, 45(8), 1281-1302. https://doi.org/10.1016/S0022-5096(97)00007-0
  62. Reiter, T. and Dvorak, G.J. (1998), "Micromechanical models for graded composite materials: II. Thermomechanical loading", J. Mech. Phys. Solids, 46(9), 1655-1673. https://doi.org/10.1016/S0022-5096(97)00039-2
  63. Reuss, A. (1929), "Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", Z. Angew. Math. Mech., 9(1) 49-58. https://doi.org/10.1002/zamm.19290090104
  64. Schmauder, S. and Weber, U. (2001), "Modelling of functionally graded materials by numerical homogenization", Arch. Appl. Mech., 71(2-3), 183-193.
  65. Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
  66. Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
  67. Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M. and Carrera, E. (2015) "Stress, vibration and buckling analyses of FGM plates-A state-of-the-art review", Compos. Struct., 120, 10-31.
  68. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Modell., 34(12), 3991-4011.
  69. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  70. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  71. Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound. Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
  72. Voigt, W. (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann. Phys., 38(2), 573-587.
  73. Wang, Y.Q. and Zu, J.W. (2017a), "Nonlinear steady-state responses of longitudinally traveling functionally graded material plates in contact with liquid", Compos. Struct., 164, 130-144.
  74. Wang, Y.Q. and Zu, J.W. (2017b), "Nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity", Compos. Part B Eng., 117, 74-88. https://doi.org/10.1016/j.compositesb.2017.02.037
  75. Wang, Y.Q. and Zu, J.W. (2017c), "Analytical analysis for vibration of longitudinally moving plate submerged in infinite liquid domain", Appl. Math. Mech., 38(5), 625-646.
  76. Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990), Proceedings of the 1st International Symposium on Functionally Gradient Material, Sendai, Japan, October.
  77. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  78. Yin, H.M., Sun, L.Z. and Paulinho, G.H. (2004), "Micromechanics-based elastic model for functionally graded materials with particle interactions", Acta Mater., 52(12), 3535-3543. https://doi.org/10.1016/j.actamat.2004.04.007
  79. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A., Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
  80. Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/GAE.2018.14.6.519
  81. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/SEM.2015.54.4.693
  82. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34.
  83. Zine, A, Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/SCS.2018.26.2.125
  84. Zuiker, J.R. (1995) "Functionally graded materials: Choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H

Cited by

  1. A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads vol.7, pp.1, 2020, https://doi.org/10.12989/smm.2020.7.1.027
  2. An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells vol.40, pp.2, 2018, https://doi.org/10.12989/scs.2021.40.2.307