DOI QR코드

DOI QR Code

Comparison of behaviour of basal reinforced piled embankment with two layer of reinforcement

  • Balaban, Eren (Department of Transport Structures, University of Pardubice) ;
  • Onur, Mehmet I. (Department of Civil Engineering, Eskisehir Technical University)
  • 투고 : 2018.01.27
  • 심사 : 2018.06.12
  • 발행 : 2018.10.30

초록

Interest to basal reinforced piled embankments is increasing recently due to their rapid construction and reliability. A comprehensive parametric study is conducted to determine effects of pile properties, reinforcement stiffness, embankment properties and soft soil properties into settlements, pressures and excess pore water pressure development and dissipations. Results which are obtained by using one-layer reinforcement during construction are compared with the results obtained by using two-layer reinforcement during construction. Finite element method is used during the parametric study. Second layer of reinforcement is placed in five different positions in order to reveal effects of reinforcement position into behaviour. Traffic load is also taken into consideration during the study. Differences between the results without presence of traffic loading and with presence of traffic loading is stated in this the study.

키워드

참고문헌

  1. Ariyarathne, P. and Liyanapathirana, D.S. (2015), "Review of existing design methods for geosynthetic-reinforced pile-supported embankments", Soil. Found., 55(1), 17-34. https://doi.org/10.1016/j.sandf.2014.12.002
  2. Bhasi, A. and Rajagopal, K. (2015), "Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile-soil interaction", Geotext. Geomembr., 43(6), 524-536. https://doi.org/10.1016/j.geotexmem.2015.05.003
  3. Das, B.M. and Sobhan, K. (2013), Principles of Geotechnical Engineering, Cengage Learning, Stamford, Connecticut, U.S.A.
  4. Ghosh, B., Fatahi, B. and Khabbaz, H. (2016), "Mechanical model to analyse multilayer geosynthetic reinforced granular layer in column supported embankments", Proc. Eng., 143, 387-394. https://doi.org/10.1016/j.proeng.2016.06.049
  5. Han, J. and Gabr, M.A. (2002), "Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil", J. Geotech. Geoenviron. Eng., 128(1), 44-53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)
  6. Hegde, A. and Sitharam, T.G. (2016), "Behaviour of geocell reinforced soft clay bed subjected to incremental cyclic loading", Geomech. Eng., 10(4), 405-422. https://doi.org/10.12989/gae.2016.10.4.405
  7. Huang, J. and Han, J. (2009), "3D coupled mechanical and hydraulic modelling of a geosynthetic-reinforced deep mixed column-supported embankment", Geotext. Geomembr., 27(4), 272-280. https://doi.org/10.1016/j.geotexmem.2009.01.001
  8. Huang, J. and Han, J. (2010), "Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling", Comput. Geotech., 37(5), 638-648. https://doi.org/10.1016/j.compgeo.2010.04.002
  9. Lai, H., Zheng, J., Zhang, J., Zhang, R. and Cui, L. (2014), "DEM analysis of "soil"-arching within geogrid-reinforced and unreinforced pile-supported embankments", Comput. Geotech., 61, 13-23. https://doi.org/10.1016/j.compgeo.2014.04.007
  10. Latha, G.M. (2011), "Design of geocell reinforcement for supporting embankments on soft ground", Geomech. Eng., 3(2), 117-130. https://doi.org/10.12989/gae.2011.3.2.117
  11. Lehn, J., Moormann, C. and Aschrafi, J. (2016), "Numerical investigations on the load distribution over the geogrid of a basal reinforced piled embankment under cyclic loading", Proc. Eng., 143, 435-444. https://doi.org/10.1016/j.proeng.2016.06.055
  12. Liu, H.L., Ng, C.W. and Fei, K. (2007), "Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: Case study", J. Geotech. Geoenviron. Eng., 133(12), 1483-1493. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1483)
  13. Liu, K.W. and Rowe, R.K. (2016), "Performance of reinforced, DMM column-supported embankment considering reinforcement viscosity and subsoil's decreasing hydraulic conductivity", Comput. Geotech., 71, 147-158. https://doi.org/10.1016/j.compgeo.2015.09.006
  14. Lu, W. and Miao, L. (2015), "A simplified 2-D evaluation method of the arching effect for geosynthetic-reinforced and pilesupported embankments", Comput. Geotech., 65, 97-103. https://doi.org/10.1016/j.compgeo.2014.11.014
  15. Mohamed, S.B.A., Yang, K.H. and Hung, W.Y. (2014) "Finite element analysis of two tier geosynthetic-reinforced soil walls: Comparison involving centrifuge tests and limit equilibrium results", Comput. Geotech., 61, 67-84. https://doi.org/10.1016/j.compgeo.2014.04.010
  16. PLAXIS (2016), Plaxis Material Models Manual, AA Balkema, Rotterdam, The Netherlands.
  17. Rui, R., Van Tol, A.F., Xia, Y.Y., Van Eekelen, S.J.M. and Hu, G. (2016), "Investigation of soil-arching development in dense sand by 2d model tests", Geotech. Test. J., 39(3), 415-430.
  18. Sturr, S. (2004), "Determination of soil stiffness parameters", Proceedings of the Short Course on Computation Geotechnics + Dynamics, Boulder, Colorado, U.S.A., January.
  19. Tafreshi, S.N.M. and Norouzi, A.H. (2015), "Application of waste rubber to reduce the settlement of road embankment", Geomech. Eng., 9(2), 219-241. https://doi.org/10.12989/gae.2015.9.2.219
  20. Terzaghi, K. (1959), Theoretical Soil Mechanics Ninth Printing, John Wiley and Sons, Inc., New York, U.S.A.
  21. Van Eekelen, S.J., Bezuijen, A., Lodder, H.J. and van Tol, E.A. (2012), "Model experiments on piled embankments. Part I", Geotext. Geomembr., 32, 69-81. https://doi.org/10.1016/j.geotexmem.2011.11.002
  22. Van Eekelen, S.J.M. (2016), "The 2016-update of the dutch design guideline for basal reinforced piled embankments", Proc. Eng., 143, 582-589. https://doi.org/10.1016/j.proeng.2016.06.077
  23. Van Eekelen, S.J.M. and Venmans, A.A. (2016), "Piled embankment or a traditional sand construction: How to decide? A case study", Proc. Eng., 143, 590-597.
  24. Van Eekelen, S.J.M., Bezuijen, A. and Van Tol, A.F. (2011), "Analysis and modification of the british standard BS8006 for the design of piled embankments", Geotext. Geomembr., 29, 345-359. https://doi.org/10.1016/j.geotexmem.2011.02.001
  25. Van Eekelen, S.J.M., Bezuijen, A. and Van Tol, A.F. (2015), "Validation of analytical models for the design of basal reinforced piled embankments", Geotext. Geomembr., 43(1), 56-81. https://doi.org/10.1016/j.geotexmem.2014.10.002
  26. Van Eekelen, S.J.M., Bezuijen, A., Lodder, H.J. and van Tol, E.A. (2012), "Model experiments on piled embankments. Part II", Geotext. Geomembr., 32, 82-94. https://doi.org/10.1016/j.geotexmem.2011.11.003
  27. Xing, H., Zhang, Z., Liu, H. and Wei, H. (2014), "Large-scale tests of pile-supported earth platform with and without geogrid", Geotext. Geomembr., 42(6), 586-598. https://doi.org/10.1016/j.geotexmem.2014.10.005
  28. Yildiz, A. and Uysal, F. (2015), "Numerical modelling of haarajoki test embankment on soft clays with and without PVDs", Geomech. Eng., 8(5), 707-726. https://doi.org/10.12989/gae.2015.8.5.707
  29. Zhang, J., Zheng, J., Chen, B. and Yin, J. (2013), "Coupled mechanical and hydraulic modeling of a geosynthetic-reinforced and pile-supported embankment", Comput. Geotech., 52, 28-37. https://doi.org/10.1016/j.compgeo.2013.03.003
  30. Zhang, L., Zhao, M., Hu, Y., Zhao, H. and Chen, B. (2012), "Semi-analytical solutions for geosynthetic-reinforced and pile-supported embankment", Comput. Geotech., 44, 167-175.
  31. Zhou, W.H., Lao, J.Y., Huang, Y. and Chen, R. (2016), "Three dimensional finite element modelling of soil arching in pile-supported geogrid-reinforced embankments", Proc. Eng., 143, 607-614.