Acknowledgement
Supported by : Ministry of Trade, Industry & Energy (MI)
References
- AISC (1964), Specification for the Design, Fabrication and Erection of Structural Steel for Buildings, American Institute of Steel Construction, Chicago, Illinois, U.S.A.
- Bortsch, R. (1921), "Die mitwirkende Plattenbreite", Der Bauingenieur, 23, 662-667.
- Box, T. (1883), A practical Treatise on the Strength of Materials: Including Their Elasticity and Resistance to Impact, E. & F.N. Spon, London, U.K.
- BS 153 (1966), Steel Girder Bridges, Part 4, Design and Construction, British Standards Institution, London, U.K.
- BS 499 (1961), The Use of Structural Steel in Building and Addendum, British Standards Institution, London, U.K.
- Carlsen, C.A. (1977), "Simplified collapse analysis of stiffened plates", Norweg. Marit. Res., 7(4), 2-36.
- Cerik, B.C. (2018), "Ultimate longitudinal compressive strength of steel plates with lateral patch load induced plastic deformation", Thin-Wall. Struct., 122, 416-424. https://doi.org/10.1016/j.tws.2017.10.030
- Chilver, A.H. (1953), "The maximum strength of the thin-walled channel strut", Civil Eng. Pub. Works Rev., 48, 1143-1146.
- Cox, H.L. (1933), Buckling of Thin Plates in Compression, R&M No. 1554, British Aeronautical Research Committee (ARC), U.K.
- Cui, W. and Mansour, A.E. (1998), "Effects of welding distortions and residual stresses on the ultimate strength of long rectangular plates under uniaxial compression", Mar. Struct., 11(6), 251-269. https://doi.org/10.1016/S0951-8339(98)00012-4
- Czujko, J. and Paik, J.K. (2015), "A new method for accidental limit states design of thin walled structures subjected to hydrocarbon explosion loads", Ships Offshore Struct., 10(5), 460-469.
- DNV (1987), Use of High Tensile Steel in Ship Structures, The Tanker Structure Co-operative Forum Meeting with Shipbuilders, Det Norske Veritas, Paramus, New Jersey, U.S.A.
- Dow, R.S. and Smith, C.S. (1984), "Effects of localized imperfections on compressive strength of long rectangular plates", J. Constr. Steel Re., 4, 51-76. https://doi.org/10.1016/0143-974X(84)90035-X
- Dwight, J.B. and Moxham, K.E. (1969), "Welded steel plates in compression", The Struct. Eng., 47(2), 49-66.
- Faulkner, D. (1975), "A review of effecting plating for use in analysis of stiffened plating in bending and compression", J. Ship Res., 19(1), 1-17.
- Frankland, J.M. (1940), The Strength of Ship Plating Under Edge Compression. U.S., Experimental Model Basin Progress Report 469.
- Gerard, G. (1957), Part 4-Failure of Plates and Composite Elements, Handbook of Structural Stability, NACA TN 3784.
- Gordon, J.M., Teixeira, A.P. and Guedes Soares, C. (2011), Ultimate Strength of Ship Structures, Edited by Guedes Soares C, Garbatov Y, Teixeira AP editors, Marine Technology and Engineering, Taylor & Francis Group, London, U.K.
- Guedes Soares, C. (1988), "Design equations for the compressive strength of unstiffened plate elements with initial imperfections", J. Constr. Steel Res., 9(4), 287-310. https://doi.org/10.1016/0143-974X(88)90065-X
- Guedes Soares, C., Gordo, J.M. and Teixeira, A.P. (2000), "Design equations for plate subjected to heat loads and lateral pressure", Mar. Struct., 13(1), 1-23. https://doi.org/10.1016/S0951-8339(00)00005-8
- Hogstrom, P. and Ringberg, J.W. (2012), "An extensive study of a ship's survivability after collision-a parameter study of material characteristics, non-linear FEA and damage stability analyses", Mar. Struct., 27(1), 1-28. https://doi.org/10.1016/j.marstruc.2012.03.001
- Hong, L. and Amdahl, J. (2012), "Rapid assessment of ship grounding over large contact surface", Ships Offshore Struct., 7(1), 5-19. https://doi.org/10.1080/17445302.2011.579003
- Hughes, O.F. (1983), Ship Structural Design: A Rationally-Based, Computer-Aided Optimization Approach, Wiley, New York, U.S.A.
- ISSC (2012), "Ultimate Strength (Committee III.1)", Proceedings of the 18th International Ship and Offshore Structures Congress, Rostock, Germany, September.
- ISSC (2015), "Ultimate Strength (Committee III.1)", Proceedings of the 19th International Ship and Offshore Structures Congress, Cascais, Portugal, September.
- Ivanov, L.D. and Rousev, S.H. (1979), "Statistical estimation of reduction coefficient of ship's hull plates with initial deflections", The Naval Archit., 4, 158-160.
- Jiang, X.L., Yu, H.Y. and Kaminski, M.L. (2014), "Assessment of residual ultimate hull girder strength of damaged ships", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, U.S.A.
- John, W. (1987), "On the strains of iron ships", RINA Trans., 18, 98-117.
- Kim, D.K., Kim, B.J., Seo, J.K., Kim, H.B., Zhang, X.M. and Paik, J.K. (2014), "Time-dependent residual ultimate longitudinal strength-grounding damage index (R-D) diagram", Ocean Eng., 76, 163-171. https://doi.org/10.1016/j.oceaneng.2013.06.023
- Kim, D.K., Kim, H.B., Mohd, M.H. and Paik, J.K. (2013a), "Comparison of residual strength-grounding damaged index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method", Int. J. Naval Archit. Ocean Eng., 5(1), 47-61. https://doi.org/10.2478/IJNAOE-2013-0117
- Kim, D.K., Lim, H.L., Kim, M.S., Hwang, O.J. and Park, K.S. (2017), "An empirical formulation for predicting the ultimate strength of stiffened panels subjected to longitudinal compression", Ocean Eng., 140, 270-280. https://doi.org/10.1016/j.oceaneng.2017.05.031
- Kim, D.K., Lim, H.L. and Yu, S.Y. (2018a), "A technical review on ultimate strength prediction of stiffened panels in axial compression", Ocean Eng., Under Revision.
- Kim, D.K., Ng, W.C.K. and Hwang, O.J. (2018b), "An empirical formulation to predict maximum deflection of blast wall under explosion", Struct. Eng. Mech., Accepted.
- Kim, D.K., Ng, W.C.K. Hwang, O.J., Sohn, J.M. and Lee, E.B. (2018c), "Recommended finite element formulations for the analysis of offshore blast walls in an explosion", Lat. Am. J. Sol. Struct., Accepted.
- Kim, D.K., Park, D.K., Kim, J.H., Kim, S.J., Kim, B.J., Seo, J.K. and Paik, J.K. (2012a), "Effect of corrosion on the ultimate strength of double hull oil tankers-part I: stiffened panels", Struct. Eng. Mech., 42(4), 507-530. https://doi.org/10.12989/sem.2012.42.4.507
- Kim, D.K., Park, D.K., Park, D.H., Kim, H.B., Kim, B.J., Seo, J.K. and Paik, J.K. (2012b), "Effect of corrosion on the ultimate strength of double hull oil tankers-part II: hull girders", Struct. Eng. Mech., 42(4), 531-549. https://doi.org/10.12989/sem.2012.42.4.531
- Kim, D.K., Perdersen, P.T., Paik, J.K., Kim, H.B., Zhang, X.M. and Kim, M.S. (2013b), "Safety guidelines of ultimate hull girder strength for grounded container ships", Safety Sci., 59, 46-54. https://doi.org/10.1016/j.ssci.2013.04.006
- Kim, D.K. and Poh, B.Y. (2018), "Ultimate strength of initially deflected plate under longitudinal compression: Part II=reviews on accuracy of existing formulations", Struct. Eng. Mech., Under Review.
- Kim, D.K., Yu, S.Y. and Choi, H.S. (2013c), "Condition assessment of raking damaged bulk carriers under vertical bending moments", Struct. Eng. Mech., 46(5), 629-644. https://doi.org/10.12989/sem.2013.46.5.629
- Marguerre, K. (1937), "Die mittragende breite der gedruckten platte", Translated NACA Technical Note 833, Original in Luftfahrt Forschung, 14(3), 121.
- Metzer, W. (1929), "Die mittragende Breite", Dissertation, er Technischen Hochschule zu Aache (in German).
- Ozdemir, M., Ergin, A., Yanagihara, D., Tanaka, S. and Yao, T. (2018), "A new method to estimate ultimate strength of stiffened panels under longitudinal thrust based on analytical formulas", Mar. Struct., 59, 510-535. https://doi.org/10.1016/j.marstruc.2018.01.001
- Paik, J.K. (2018), Ultimate Limit State Analysis and Design of Plated Structures, 2nd Edition, Jon Wiley & Sons, Chichester, U.K.
- Paik, J.K., Kim, B.J., Jeong, J.S., Kim, S.H., Jang, Y.S., Kim, G.S., Woo, J.H., Kim, Y.S., Chun, M.J., Shin, Y.S. and Czujko, J. (2010), "CFD simulation of gas explosion and fire actions", Ships Offshore Struct., 5(1), 3-12. https://doi.org/10.1080/17445300902872028
- Paik, J.K., Kim, B.J. and Seo, J.K. (2008a), "Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part I Unstiffened plates", Ocean Eng., 35(2), 261-270. https://doi.org/10.1016/j.oceaneng.2007.08.004
- Paik, J.K., Kim, B.J. and Seo, J.K. (2008b), "Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part II Stiffened panels", Ocean Eng., 35(2), 271-280. https://doi.org/10.1016/j.oceaneng.2007.08.007
- Paik, J.K., Kim, B.J. and Seo, J.K. (2008c), "Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part III Hull girders", Ocean Eng., 35(2), 281-286. https://doi.org/10.1016/j.oceaneng.2007.08.008
- Paik, J.K., Kim, D.K., Park, D.H., Kim, H.B. and Kim, M.S. (2012), "A new method for assessing the safety of ships damaged by grounding", Int. J. Marit. Eng., 154(A1), 1-20.
- Paik, J.K., Kim, D.K., Park, D.H., Kim, H.B., Mansour, A.E. and Caldwell, J.B. (2013), "Modified Paik-Mansour formula for ultimate strength calculations of ship hulls", Ships Offshore Struct., 8(3-4), 245-260. https://doi.org/10.1080/17445302.2012.676247
- Paik, J.K., Lee, J.M. and Lee, D.H. (2003), "Ultimate strength of dented steel plates under axial compression loads", Int. J. Mech. Sci., 45(3), 433-448. https://doi.org/10.1016/S0020-7403(03)00062-6
- Paik, J.K., Thayamballi, A.K. and Lee, J.M. (2004). "Effect of initial deflection shape on the ultimate strength behavior of welded steel plates under biaxial compressive loads", J. Ship Res., 48(1), 45-60.
- Paik, J.K., Thayamballi, A.K. and Yang, S.H. (1998), "Residual strength assessment of ships after collision and grounding", Mar. Technol., 35(1), 38-54.
- Park, D.K., Kim, D.K., Seo, J.K., Kim, B.J., Ha, Y.C. and Paik, J.K. (2015a), "Operability of non-ice glass aged ships in the Arctic Ocean-part I: Ultimate limit state approach", Ocean Eng., 102, 197-205. https://doi.org/10.1016/j.oceaneng.2014.12.040
- Park, D.K., Kim, D.K., Seo, J.K., Kim, B.J., Ha, Y.C. and Paik, J.K. (2015b), "Operability of non-ice glass aged ships in the Arctic Ocean-part II: Accidental limit state approach", Ocean Eng., 102, 206-215. https://doi.org/10.1016/j.oceaneng.2015.04.038
- Raviprakash, A.V., Prabu, B. and Alagumurthi, N. (2012), "Residual ultimate compressive strength of dented square plates", Thin-Wall. Struct., 58, 32-39. https://doi.org/10.1016/j.tws.2012.04.009
- Saad-Eldeen, S., Garbatov, Y. and Guedes Soares, C. (2016), "Ultimate strength analysis of highly damaged plates", Mar. Struct., 45, 63-85. https://doi.org/10.1016/j.marstruc.2015.10.006
- Schnadel, G. (1930), "Die uberschreitung der knickgrenze dunnen platen", Proceedings of the 3rd International Congress on Applied Mechanics, Stockholm, Sweden.
- Schuman, L. and Back, G. (1930), Strength of Rectangular Flat Plates Under Edge Compression, NACA Technical Report 356, National Advisory Committee for Aeronautics, Washington, U.S.A.
- Sechler, E.E. (1933), The Ultimate Strength of Thin Flat Sheets in Compression, Guggenheim Aeronautical Laboratory Publication 27, California Institute of Technology, Pasadena, California, U.S.A.
- Smith, C.S., Davidson, P.C., Chapman, J.C. and Dowling, P.J. (1988), "Strength and stiffness of ship's plating under in-plane compression and tension", Tran RINA, 130, 277-296.
- Sohn, J.M., Kim, S.J., Kim, B.H. and Paik, J.K. (2013), "Nonlinear structural consequence analysis of FPSO topside blastwalls", Ocean Eng., 60, 149-162. https://doi.org/10.1016/j.oceaneng.2012.12.005
- Soreide, T.H. and Czujko, J. (1983), "Load-carrying capacity of plates under combined lateral load and axial/biaxial compression", Proceedings of the 2nd International Symposium on Practical Design in Shipbuilding, Tokyo, Japan.
- Teixeira, A.P., Ivanov, L.D. and Guedes Soares, C. (2013), "Assessment of characteristics values of the ultimate strength of corroded steel plates with initial imperfections", Eng. Struct., 56, 517-527. https://doi.org/10.1016/j.engstruct.2013.05.002
- Timoshenko, S. (1936), Theory of Elastic Stability, 1st Edition, McGraw Hill, New York, U..SA.
- Ueda, Y., Yao, T., Nakacho, K. and Yuan, M.G. (1992), Prediction of Welding Residual Stress, Deformation and Ultimate Strength of Plate Panels, Engineering Design in Welded Constructions, Pergamon Press, Oxford, U.K.
- Ueda, Y., Yasukawa, W., Yao, T., Ikegami, H. and Ominami, R. (1975), "Ultimate strength of square plates subjected to compression effects of initial deflection and welding residual stresses (1st report)", J. Soc. Naval Archit. Jap., 137, 210-221.
- von Karman, T. (1924), "Die mittragende Breite (The effective width), Beitrage zur technischen Mechanik (in German).
- Wijaya, C. and Kim, B.T. (2011), "FE analysis of unstiffened and stiffened corrugated panels subjected to blast loading", J. Mech. Sci. Technol., 25(12), 3159-3164. https://doi.org/10.1007/s12206-011-0825-x
- Winter, G. (1940), Stress Distribution in and Equivalent Width of Flanges of Wide Thin-Wall Steel Beams, NACA Technical, Note 784.
- Witkowska, M. and Guedes Soares, C. (2015), "Ultimate strength of locally damaged panels", Thin-Wall. Struct., 97, 225-240. https://doi.org/10.1016/j.tws.2015.09.025
- Xu, M.C. and Guedes Soares, C. (2013), "Assessment of residual ultimate strength for side dented stiffened panels subjected to compressive loads", Eng. Struct., 49, 316-328. https://doi.org/10.1016/j.engstruct.2012.11.019
- Xu, M.C. and Guedes Soares, C. (2015), "Effect of a central dent on the ultimate strength of narrow stiffened panels under axial compression", Int. J. Mech. Sci., 100, 68-79. https://doi.org/10.1016/j.ijmecsci.2015.06.008
- Yao, T. and Fujikubo, M. (2016), Buckling and Ultimate Strength of Ship and Ship-like Floating Structures, Elsevier Inc., New York, U.S.A.
- Youssef, S.A.M., Faisal, M., Seo, J.K., Kim, B.J., Ha, Y.C., Kim, D.K., Paik, J.K., Cheng, F. and Kim, M.S. (2016), "Assessing the risk of ship hull collapse due to collision", Ships Offshore Struct., 11(4), 335-350. https://doi.org/10.1080/17445302.2014.993110
- ANSYS (2014), User's Manual Version 13.0, ANSYS Inc., Canonsburg, Pennsylvania, U.S.A.
Cited by
- Optimum design of stiffened plates for static or dynamic loadings using different ribs vol.74, pp.2, 2018, https://doi.org/10.12989/sem.2020.74.2.255