References
- Ansari, R. and Gholami, R. (2016), "Nonlinear primary resonance of third-order deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes", Compos. Struct., 154, 707-723. https://doi.org/10.1016/j.compstruct.2016.07.023
- Ansari, R., Faghih Shojaei, M., Mihammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
- Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahbodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low-Dimens. Syst. Nanostruct., 69, 294-305. https://doi.org/10.1016/j.physe.2015.01.011
- Ansari, R., Pourashraf, T., Gholami, R. and Shahbodini, A. (2016), "Analytical solution for nonlinear post buckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers", Compos. Part B: Eng., 90, 267-277. https://doi.org/10.1016/j.compositesb.2015.12.012
- Benedict, T. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nano-tube-reinforced composite shell structures", Acta Mech., 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z
- Fazelzadeh, S.A., Pouresmaeeli, S. and Ghavanloo, E. (2015), "Aeroelastic characteristic of functionally graded carbon nanotube- reinforced composite plates under a supersonic flow", Comput. Meth. Appl. Mech. Eng., 285, 714-729. https://doi.org/10.1016/j.cma.2014.11.042
- Gholami, R. and Ansari, R. (2017), "Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates", Compos. Struct., 180, 760-771. https://doi.org/10.1016/j.compstruct.2017.08.053
- Gholami, R. and Ansari, R. (2018) "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209. https://doi.org/10.1016/j.engstruct.2017.11.019
- Gholami, R., Ansari, R. and Gholami, Y. (2017) "Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams", Compos. Struct., 174, 45-58. https://doi.org/10.1016/j.compstruct.2017.04.042
- Gorbanpour Arani, A. and Haghparast, E. (2017), "Vibration analysis of axially moving carbon nanotube reinforced composite plate under initial tension", Polym. Compos., 38(4), 814-822. https://doi.org/10.1002/pc.23642
- Gorbanpour Arani, A., Haghparast, E. and Babakbar Zaeri, H. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529
- Gorbanpour Arani, A., Haghparast, E. and Babakbar, Z. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., 57(1), 105-126. https://doi.org/10.12989/sem.2016.57.1.105
- Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nano-tubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063
- He, J.H. (1999), "Homotopy perturbation technique", Comput. Meth. Appl. Mech. Eng., 178, 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
- Iijima, S.J. (1991), "Helical microtubules of graphitic carbon", Nat., 354, 56-58. https://doi.org/10.1038/354056a0
- Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nano-tube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
- Kiani, Y. (2016), "Free vibration of FG-CNT reinforced composite skew plates", Aerosp. Sci. Technol., 58, 178-188. https://doi.org/10.1016/j.ast.2016.08.018
- Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381. https://doi.org/10.1016/j.compstruct.2016.09.079
- Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007
- Memar Ardestani, M., Zhang, L.W. and Liew, K.M. (2017), "Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates", Comput. Meth. Appl. Mech. Eng., 317, 341-379. https://doi.org/10.1016/j.cma.2016.12.009
- Mirzaei, M. and Kiani, Y. (2016), "Fee vibration of functionally graded carbon nanotube reinforced composite cylindrical panels, Compos. Struct., 142, 45-56. https://doi.org/10.1016/j.compstruct.2015.12.071
- Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nano-tube-reinforced composite plates with cutout", Beilst. J. Nanotechnol., 7(1), 511-523. https://doi.org/10.3762/bjnano.7.45
- Rafiee, M., He, X.Q. and Liew, K.M. "Non-linear analysis of piezoelectric nanocomposite energy harvesting plates", Smart Mater. Struct., 23, 065001. https://doi.org/10.1088/0964-1726/23/6/065001
- Ribeiro, P. (2016), "Non-local effects on the non-linear modes of vibration of carbon nano-tubes under electrostatic actuation", Int. J. Non-Lin. Mech., 87, 1-20. https://doi.org/10.1016/j.ijnonlinmec.2016.07.007
- Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Struct., 163, 350-364. https://doi.org/10.1016/j.compstruct.2016.11.011
- Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Impact analysis of CNT-reinforced composite plates based on Reddy's higher-order shear deformation theory using an element-free approach", Compos. Struct., 170, 228-242. https://doi.org/10.1016/j.compstruct.2017.03.026
- Shams, S. and Soltani, B. (2016), "Buckling of laminated carbon nano-tube-reinforced composite plates on elastic foundations using a mesh free method", Arab. J. Sci. Eng., 41(5), 1981-1993. https://doi.org/10.1007/s13369-016-2051-4
- Shen, H.S. (2012), "Thermal buckling and post buckling behavior of functionally graded carbon nano-tube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Singh, G., Raju, K.K. and Rao, G.V. (1990), "Non-linear vibrations of simply supported rectangular cross-ply plates", J. Sound Vibr., 142, 213-226. https://doi.org/10.1016/0022-460X(90)90553-C
- Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43. https://doi.org/10.1016/j.compstruct.2016.02.025
- Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nano-tube-reinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
- Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330. https://doi.org/10.1016/j.commatsci.2011.03.005
- Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Meth. Appl. Eng., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024
- Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic response of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903. https://doi.org/10.1016/j.cma.2016.10.020