참고문헌
- Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
- Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66, 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6
- Bobet, A. and Einstein, H.H. (1998), "Fracture coalescence in rock-type materials under uniaxial and biaxial compression", Int. J. Rock Mech. Min. Sci., 35, 863-888.
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. and Mech.Solids, 22,1205-1218.
- Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies in Construction Materials, 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
- Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Fracture analyses of different pre-holed concrete specimens under compression", Acta mechanica sinica, 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
- Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "A coupled experimental and numerical simulation of rock slope joints behavior" , Arabian J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
- Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
- Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016a), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mechanica Soilda sinica, 5, 555-566.
- Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Latin Am. J. Solids Struct., 11(8), 1400-1416. https://doi.org/10.1590/S1679-78252014000800007
- Ibrahim, M.H.W, Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on selfcompacting concrete containing coal bottom ash", Procedia -Social Behavioral Sci., 198, 2280-2289.
- Kequan, Y.U. and Zhoudao, L.U, (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
- Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
- Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/sem.2015.53.6.1271
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431.
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2016.01.017
- Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
- Lisjak, A. and Grasselli, G. (2014), "A review of discrete modeling techniques for fracturing processes in discontinuous rock masses", J. Rock Mech. Geotech. Eng., 6(4), 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007
- Liu, X., Nie, Z., Wu, S. and Wang, C, (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Studies Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
- Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Impact. Eng., 79, 95-101. https://doi.org/10.1016/j.ijimpeng.2014.10.008
- Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
- Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Mortar , 17(4), 33-39.
- Munjiza, A., Owen, D.R.J. and Bicanic, N.A. (1995), "A combined finite-discrete element method in transient dynamics of fracturing solids", Eng. Comput., 12(2), 145-174. https://doi.org/10.1108/02644409510799532
- Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
- Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
- Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4), 167-181.
- Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
- Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
- Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock. Mech. Min., 399-241.
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/CAC.2016.17.4.489
- Sarfarazi, V. and Shubert, W. (2016b), "Sliding phenomena in intermittent rock joint", Periodica polyechnica civil engineering, 5, 1-10.
- Sarfarazi, V., Haeri, H. and khaloo, A (2016a), "The effect of nonpersistent joints on sliding direction if rock slopes", Comput. Concrete, 7, 723-737.
- Shemirani, A., Haeri, H., Sarfarazi, V. and Hedayat, A. (2017), "A review paper about experimental investigations on failure behavior of non-persistent joint", Geomech. Eng., 13, 535-570.
- Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys.Res., 100(4), 5975-5990. https://doi.org/10.1029/95JB00040
- Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
- Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
- Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
- Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469 https://doi.org/10.1016/j.engfracmech.2011.06.004
- Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
- Wong, L.N.Y. and Einstein, H.H. (2008), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min., 46(2), 239-249.
- Wong, L.N.Y. and Einstein, H.H. (2009), "Crack coalescence in molded gypsum and Carrara marble: part 2- microscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3
- Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using Numerical Manifold method", Constr. Build Mater., 72, 72-82. https://doi.org/10.1016/j.conbuildmat.2014.08.082
- Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/SEM.2016.57.6.1143
- Zhang, Q.B. and Zhao, J (2014), "Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms", Int. J. Fract., 189, 1-32 https://doi.org/10.1007/s10704-014-9959-z
- Zhang, X.P. and Wong, L.N.Y. (2012), "Cracking process in rocklike material containing a single flaw under uniaxial compression: A numerical study based on parallel bondedparticle model approach", Rock Mech. Rock Eng., 45(5), 711-737. https://doi.org/10.1007/s00603-011-0176-z
- Zhang, X.P. and Wong, R.H.C. (2013), "Crack initiation, propagation and coalescence in rock-like material containing two flaws: A numerical study based on bonded-particle model approach", Rock Mech. Rock Eng., 46(5), 1001-1021. https://doi.org/10.1007/s00603-012-0323-1
- Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modelling investigation on fracturing in coal under impact loads", Int. J. Fract, 183(1), 63-80. https://doi.org/10.1007/s10704-013-9876-6