DOI QR코드

DOI QR Code

Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors

  • Chahnasir, E. Sadeghipour (Department of Civil Engineering, Qeshm International Branch, Islamic Azad University) ;
  • Zandi, Y. (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) ;
  • Shariati, M. (Faculty of Civil Engineering, University of Tabriz) ;
  • Dehghani, E. (Department of Civil Engineering, University of Qom) ;
  • Toghroli, A. (Department of Civil Engineering, Faculty of engineering, University of Malaya) ;
  • Mohamad, E. Tonnizam (Centre of Tropical Geoengineering (GEOTROPIK), Faculty Civil Engineering, Universiti Teknologi Malaysia) ;
  • Shariati, A. (Department of Civil Engineering, South Tehran Branch, Islamic Azad University) ;
  • Safa, M. (Department of Civil Engineering, Faculty of engineering, University of Malaya) ;
  • Wakil, K. (Information Technology Department, Technical College of Informatics, Sulaimani Polytechnic University) ;
  • Khorami, M. (Facultad de Arquitectura y Urbanismo, Universidad Tecnologica Equinoccial, Calle Rumipamba s/n y Bourgeois)
  • Received : 2018.01.10
  • Accepted : 2018.09.18
  • Published : 2018.10.25

Abstract

The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

Keywords

References

  1. Andalib, Z., Kafi, M.A., Bazzaz, M. and Momenzadeh, S. (2018), "Numerical evaluation of ductility and energy absorption of steel rings constructed from plates", Eng. Struct., 169, 94-106. https://doi.org/10.1016/j.engstruct.2018.05.034
  2. Andalib, Z., Kafi, M.A., Kheyroddin, A. and Bazzaz, M. (2014), "Experimental investigation of the ductility and performance of steel rings constructed from plates", J. Constr. Steel Res., 103, 77-88. https://doi.org/10.1016/j.jcsr.2014.07.016
  3. Asefa, T., Kemblowski, M. McKee, M. and Khalil, A. (2006), "Multi-time scale stream flow predictions: The support vector machines approach", J. Hydrol., 318(1), 7-16. https://doi.org/10.1016/j.jhydrol.2005.06.001
  4. Assareh, E., Behrang, M., Assari, M. and Ghanbarzadeh, A. (2010), "Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran", Energy, 35(12), 5223-5229. https://doi.org/10.1016/j.energy.2010.07.043
  5. ASTM, C. (2005), "39 (2004)"Standard test method for compressive strength of cylindrical concrete specimens", Annual Book of ASTM Standards.
  6. Bao, Y., Hu, Z. and Xiong, T. (2013), "A PSO and pattern search based memetic algorithm for SVMs parameters optimization", Neurocomput., 117, 98-106. https://doi.org/10.1016/j.neucom.2013.01.027
  7. Bazzaz, M., Andalib, Z., Kheyroddin, A. and Kafi, M.A. (2015), "Numerical comparison of the seismic performance of steel rings in off-centre bracing system and diagonal bracing system", Steel Compos. Struct., 19(4), 917-937. https://doi.org/10.12989/scs.2015.19.4.917
  8. Bazzaz, M., Andaliba, Z., Kafib, M.A. and Kheyroddin, A. (2015), "Evaluating the performance of OBS-CO in steel frames under monotonic load", Earthq. Struct., 8(3), 699-712. https://doi.org/10.12989/eas.2015.8.3.699
  9. Chapelle, O., Vapnik, V., Bousquet, O. and Mukherjee, S. (2002), "Choosing multiple parameters for support vector machines", Machine learnin, 46(1-3), 131-159. https://doi.org/10.1023/A:1012450327387
  10. Chung, K.M., Kao, W.C., Sun, C.L., Wang, L.L. and Lin, C.J. (2003), "Radius margin bounds for support vector machines with the RBF kernel", Neural Comput., 15(11), 2643-2681. https://doi.org/10.1162/089976603322385108
  11. Collobert, R. and Bengio, S. (2000), "Support vector machines for large-scale regression problems", Institut Dalle Molle d'Intelligence Artificelle Perceptive (IDIAP), Martigny, Switzerland, Tech. Rep. IDIAP-RR-00-17.
  12. Fanaie, N., Esfahani, F.G. and Soroushnia, S. (2015), "Analytical study of composite beams with different arrangements of channel shear connectors", Steel Compos. Struct., 19(2), 485-501. https://doi.org/10.12989/scs.2015.19.2.485
  13. Fister, I., Yang, X.S. and Brest, J. (2013), "A comprehensive review of firefly algorithms", Swarm Evolutionary Comput., 13, 34-46.
  14. Friedrichs, F. and Igel, C. (2005), "Evolutionary tuning of multiple SVM parameters", Neurocomput., 64, 107-117. https://doi.org/10.1016/j.neucom.2004.11.022
  15. Govindaraju, R.S. (2000), "Artificial neural networks in hydrology. II: hydrologic applications", J. Hydrol. Eng., 5(2), 124-137. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
  16. Govindaraju, R.S. and Rao, A.R. (2010), Artificial neural networks in hydrology, Springer Publishing Company, Incorporated.
  17. Guven, A. and Gunal, M. (2008), "Genetic programming approach for prediction of local scour downstream of hydraulic structures", J. Irrig. Drain. Eng.
  18. Hernandez, A., Marichal, G.N., Poncela, A.V. and Padron, I. (2015), "Design of intelligent control strategies using a magnetorheological damper for span structure", Smart Struct. Syst., 15(4), 931-947. https://doi.org/10.12989/SSS.2015.15.4.931
  19. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., 26(4), 485-499. https://doi.org/10.12989/SCS.2018.26.4.485
  20. Hsu, C.W., Chang, C.C. and Lin, C.J. (2003), A practical guide to support vector classification.
  21. Huang, C., Davis, L. and Townshend, J. (2002), "An assessment of support vector machines for land cover classification", Int. J. Remote Sens., 23(4), 725-749. https://doi.org/10.1080/01431160110040323
  22. Ismail, M. et al. (2018), "Strengthening of bolted shear joints in industrialized ferrocement construction", Steel Compo. Struct., 28(6), 681-690 https://doi.org/10.12989/scs.2018.28.6.681
  23. Ji, Y. and Sun, S. (2013), "Multitask multiclass support vector machines: model and experiments", Pattern Recogn., 46(3), 914-924. https://doi.org/10.1016/j.patcog.2012.08.010
  24. Joachims, T. (1998), Text categorization with support vector machines: Learning with many relevant features, Springer.
  25. Khalilian, M. (2015), "Angle shear connectors capacity", Modares Civil Eng. J., 15(3), 51-62.
  26. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067
  27. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N.H. (2015), "Behavior of Tilted Angle Shear Connectors", Plos one, 10(12), 1-11.
  28. Khorramian, K., Maleki, S., Shariati, M. and Ramli Sulong, N.H. (2016), "Behavior of Tilted Angle Shear Connectors (vol 10, e0144288, 2015)", Plos One, 11(2).
  29. Koza, J.R. (1992), Genetic programming: on the programming of computers by means of natural selection, MIT press.
  30. Lali, P. and Setayeshi, S. (2011), "A novel approach to develop the control of Telbot using ANFIS for nuclear hotcells", Ann. Nuclear Energ., 38(10), 2156-2162. https://doi.org/10.1016/j.anucene.2011.06.021
  31. Lee, S.W. and Verri, A. (2003), Support vector machines for computer vision and pattern recognition, World Scientific.
  32. Lorena, A.C. and De Carvalho, A.C. (2008), "Evolutionary tuning of SVM parameter values in multiclass problems", Neurocomput., 71(16), 3326-3334. https://doi.org/10.1016/j.neucom.2008.01.031
  33. Lu, W.Z. and Wang, W.J. (2005), "Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends", Chemosphere, 59(5), 693-701. https://doi.org/10.1016/j.chemosphere.2004.10.032
  34. Maleki, S. and Bagheri, S. (2008), "Behavior of channel shear connectors, Part I: Experimental study", J. Constr. Steel Res., 64, 1333-1340. https://doi.org/10.1016/j.jcsr.2008.01.010
  35. Maleki, S. and Mahoutian, M. (2009), "Experimental and analytical study on channel shear connectors in fiber-reinforced concrete", J. Constr. Steel Res., 65(8-9), 1787-1793. https://doi.org/10.1016/j.jcsr.2009.04.008
  36. Mansouri, I., Shariati, M. Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 1-11.
  37. Mohammadhassani, M. et al. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
  38. Mohammadhassani, M., Nezamabadi-pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785
  39. Mohammadzadeh1a, S. and Kim, Y. (2015), "PCA-based neurofuzzy model for system identification of smart structures".
  40. Mukkamala, S., Janoski, G. and Sung, A. (2002), "Intrusion detection using neural networks and support vector machines. Neural Networks, 2002. IJCNN'02", Proceedings of the 2002 International Joint Conference on, IEEE.
  41. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., 27(5), 537-543. https://doi.org/10.12989/SCS.2018.27.5.537
  42. Olatomiwa, L., Mekhilef, S., Shamshirband, S., Mohammadi, K., Petkovic, D. and Sudheer, C. (2015), "A support vector machine-firefly algorithm-based model for global solar radiation prediction", Solar Energy, 115, 632-644.
  43. Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., 28(4), 483-494. https://doi.org/10.12989/SCS.2018.28.4.483
  44. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., 21(3), 679-688. https://doi.org/10.12989/SCS.2016.21.3.679
  45. Sedghi, Y., Zandi, Y., Shariati, M., Ahmadi, E., Moghimi Azar, V., Toghroli, A., Safa, M., Tonnizam Mohamad, E., Khorami, M. and Wakil, K. (2018), "Application of ANFIS technique on performance of C and L shaped angle shear connectors", Smart Struct. Syst., 22(3), 335-340. https://doi.org/10.12989/sss.2018.22.3.335
  46. Shahabi, S., Sulong, N., Shariati, M., Mohammadhassani, M. and Shah, S. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651
  47. Shahabi, S., Sulong, N., Shariati, M. and Shah, S. (2016), "Performance of shear connectors at elevated temperatures-A review", Steel Compos. Struct., 20(1), 185-203. https://doi.org/10.12989/scs.2016.20.1.185
  48. Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012), "Investigation of channel shear connectors for composite concrete and steel T-beam", Int. J. Phys. Sci., 7(11), 1828-1831.
  49. Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Shariati, M. (2012), "Various types of shear connectors in composite structures: A review", Int. J. Phys. Sci., 7(22), 2876-2890.
  50. Shariati, A., Shariati, M., Ramli Sulong, N.H., Suhatril, M., Arabnejad Khanouki, M.M. and Mahoutian, M. (2014), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Constr. Build. Mater., 52, 276-283. https://doi.org/10.1016/j.conbuildmat.2013.11.036
  51. Shariati, M. (2013), Behaviour of C-shaped shear connectors in steel concrete composite beams, PhD Thesis, Faculty of engineering University of Malaya, Kuala Lumpur, Malaysia.
  52. Shariati, M. (2013), Behaviour of C-shaped Shear Connectors in Stell Concrete Composite Beams, Jabatan Kejuruteraan Awam, Fakulti Kejuruteraan, Universiti Malaya.
  53. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, 21 - 23 July, 2010, Sydney, Australia, Research Publishing Services.
  54. Shariati, M., Ramli Sulong, N.H. and Arabnejad Khanouki, M.M. (2012), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331.
  55. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Khanouki, M.A. (2015), "Behavior of V-shaped angle shear connectors: experimental and parametric study", Mater. Struct., 1-18.
  56. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392.
  57. Shariati, M., Ramli Sulong, N.H., Sinaei, H., Arabnejad Khanouki, M.M. and Shafigh, P. (2011), "Behavior of channel shear connectors in normal and light weight aggregate concrete (Experimental and Analytical Study)", Adv. Mater. Res., 168, 2303-2307.
  58. Shariati, M. et al. (2017), "Assessment of stiffened angle shear connector under monotonic and fully reversed cyclic loading", Proceedings of the 5h International Conference on Advances in Civil, Structural and Mechanical Engineering - CSM 2017, Zurich, Switzerland.
  59. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad Khanouki, M.M. and Sinaei, H. (2013), "Comparison of behaviour between channel and angle shear connectors under monotonic and fully reversed cyclic loading", Constr. Build. Mater., 38, 582-593. https://doi.org/10.1016/j.conbuildmat.2012.07.050
  60. Shariati, M., Ramli Sulong, N.H., Suhatril, M., Shariati, A., Arabnejad, M.M. and Sinaei, H. (2012), "Behaviour of Cshaped angle shear connectors under monotonic and fully reversed cyclic loading: An experimental study", Mater. Des., 41, 67-73.
  61. Shariati, M., Shariati, A., Ramli Sulong, N.H., Suhatril, M. and Khanouki, M.A. (2014), "Fatigue energy dissipation and failure analysis of angle shear connectors embedded in high strength concrete", Eng. Fail. Anal., 41, 124-134.
  62. Shariati, M. et al. (2011), "Shear resistance of channel shear connectors in plain, reinforced and lightweight concrete", Sci. Res. Essays, 6(4), 977-983.
  63. Stanojevic, D., Mandic, M., Danon, G. and Svrzic, S. (2017), "Prediction of the surface roughness of wood for machining", J. Forest. Res., 28(6), 1281-1283.
  64. Sun, S. (2013), "A survey of multi-view machine learning", Neural Comput. Appl., 23(7-8), 2031-2038. https://doi.org/10.1007/s00521-013-1362-6
  65. Sung, A.H. and Mukkamala, S. (2003), Identifying important features for intrusion detection using support vector machines and neural networks, Applications and the Internet, 2003. Proceedings. 2003 Symposium on, IEEE.
  66. Tahmasbi, F., Maleki, S., Shariati, M., Ramli Sulong, N.H. and Tahir, M.M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", Plos one, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989
  67. Tahmasbi, F., Maleki, S., Shariati, M., Sulong, N.R. and Tahir, M. (2016), "Shear capacity of C-shaped and L-shaped angle shear connectors", Plos one, 11(8), e0156989. https://doi.org/10.1371/journal.pone.0156989
  68. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M. Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 1-9.
  69. Toghroli A., Mohammadhassani, M., Shariati, M., Suhatril, M., Ibrahim, Z. and Ramli Sulong, N.H. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., 17(5), 623-639. https://doi.org/10.12989/scs.2014.17.5.623
  70. Vapnik, V. (2013), The nature of statistical learning theory, Springer Science & Business Media.
  71. Vapnik, V., Golowich, S.E. and Smola, A. (1997), "Support vector method for function approximation, regression estimation, and signal processing", Adv. Neural Inform. Process. Syst., 281-287.
  72. Vapnik, V.N. and Vapnik, V. (1998), Statistical learning theory, Wiley New York.
  73. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M., Tahir, M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., 27(3), 389-399. https://doi.org/10.12989/SCS.2018.27.3.389
  74. Yang, X.S. (2009), Firefly algorithms for multimodal optimization. International Symposium on Stochastic Algorithms, Springer.
  75. Yang, X.S. (2013), "Multiobjective firefly algorithm for continuous optimization", Eng. Comput., 29(2), 175-184. https://doi.org/10.1007/s00366-012-0254-1
  76. Zhang, C., Ji, J., Gui, Y., Kodikara, J., Yang, S.Q. and He, L. (2016), "Evaluation of soil-concrete interface shear strength based on LS-SVM".

Cited by

  1. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.155
  2. Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.347
  3. Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.377
  4. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.743
  5. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.355
  6. Computational analysis of three dimensional steel frame structures through different stiffening members vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.187
  7. Monotonic behavior of C and L shaped angle shear connectors within steel-concrete composite beams: an experimental investigation vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.237
  8. Utilization of Support Vector Models and Gene Expression Programming for Soil Strength Modeling vol.45, pp.5, 2018, https://doi.org/10.1007/s13369-020-04441-6
  9. Human development index in a context of human development: Review on the western Balkans countries vol.10, pp.9, 2018, https://doi.org/10.1002/brb3.1755
  10. Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2018, https://doi.org/10.12989/acc.2020.10.5.393
  11. Prediction of total sediment load: A case study of Wadi Arbaat in eastern Sudan vol.26, pp.6, 2018, https://doi.org/10.12989/sss.2020.26.6.781
  12. Predicting Shear Strength in FRP-Reinforced Concrete Beams Using Bat Algorithm-Based Artificial Neural Network vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5899356
  13. Estimating the Compressive Strength of Cement-Based Materials with Mining Waste Using Support Vector Machine, Decision Tree, and Random Forest Models vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6629466
  14. In-plane varying bending force effects on wave dispersion characteristics of single-layered graphene sheets vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.101
  15. Intelligently Predict the Rock Joint Shear Strength Using the Support Vector Regression and Firefly Algorithm vol.2021, pp.spec, 2018, https://doi.org/10.2113/2021/2467126
  16. Ionic liquid coated magnetic core/shell CoFe2O4@SiO2 nanoparticles for the separation/analysis of trace gold in water sample vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.295
  17. Optimization algorithms for composite beam as smart active control of structures using genetic algorithms vol.27, pp.6, 2018, https://doi.org/10.12989/sss.2021.27.6.1041
  18. Assessment of microstructure and surface effects on vibrational characteristics of public transportation vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.101
  19. Smart estimation of automatic approach in enhancing the road safety under AASHTO Standard specification and STM vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.389
  20. Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors vol.28, pp.2, 2018, https://doi.org/10.12989/sss.2021.28.2.167
  21. Machine learning-based prediction and performance study of transparent soil properties vol.28, pp.2, 2021, https://doi.org/10.12989/sss.2021.28.2.289
  22. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method vol.40, pp.6, 2018, https://doi.org/10.12989/scs.2021.40.6.853
  23. Analyzing the energy performance of buildings by neuro-fuzzy logic based on different factors vol.23, pp.12, 2018, https://doi.org/10.1007/s10668-021-01382-4