DOI QR코드

DOI QR Code

Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams

  • Shariat, Mehran (Department of Civil Engineering, Hakim Sabzevari University) ;
  • Shariati, Mahdi (Faculty of Civil Engineering, University of Tabriz) ;
  • Madadi, Amirhossein (Department of Civil Engineering, Hakim Sabzevari University) ;
  • Wakil, Karzan (Information Technology Department, Technical College of Informatics, Sulaimani Polytechnic University)
  • 투고 : 2018.06.12
  • 심사 : 2018.09.04
  • 발행 : 2018.10.25

초록

This study conducts an optimization and sensitivity analysis on rectangular reinforced concrete (RC) beam using Lagrangian Multiplier Method (LMM) as programming optimization computer soft ware. The analysis is conducted to obtain the minimum design cost for both singly and doubly RC beams according to the specifications of three regulations of American concrete institute (ACI), British regulation (BS), and Iranian concrete regulation (ICS). Moreover, a sensitivity analysis on cost is performed with respect to the effective parameters such as length, width, and depth of beam, and area of reinforcement. Accordingly, various curves are developed to be feasibly utilized in design of RC beams. Numerical examples are also represented to better illustrate the design steps. The results indicate that instead of complex optimization relationships, the LMM can be used to minimize the cost of singly and doubly reinforced beams with different boundary conditions. The results of the sensitivity analysis on LMM indicate that each regulation can provide the most optimal values at specific situations. Therefore, using the graphs proposed for different design conditions can effectively help the designer (without necessity of primary optimization knowledge) choose the best regulation and values of design parameters.

키워드

참고문헌

  1. ACI (2014), Building Code Requirements for Reinforced Concrete.
  2. Adamu, A. and Karihaloo, B. (1994), "Minimum cost design of RC beams using DCOC Part II: Beams with uniform crosssections", Struct. Optimiz., 7(4), 252-259. https://doi.org/10.1007/BF01743720
  3. Aghaee, K., Yazdi, M.A., and Tsavdaridis, K.D. (2014), "Mechanical properties of structural lightweight concrete reinforced with waste steel wires", Magaz. Concrete Res., 66(1), 1-9. https://doi.org/10.1680/macr.2013.66.1.1
  4. Andalib, Z., Kafi, M.A., Bazzaz, M. and Momenzadeh, S. (2018), "Numerical evaluation of ductility and energy absorption of steel rings constructed from plates", Eng. Struct., 169, 94-106. https://doi.org/10.1016/j.engstruct.2018.05.034
  5. Ardalan, R.B., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of selfcompacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122. https://doi.org/10.1016/j.conbuildmat.2016.12.090
  6. Awal, A.A., Shehu, I.A. and Ismail, M. (2015), "Effect of cooling regime on the residual performance of high-volume palm oil fuel ash concrete exposed to high temperatures", Constr. Build. Mater., 98, 875-883. https://doi.org/10.1016/j.conbuildmat.2015.09.001
  7. Bahadori, A. and Ghassemieh, M. (2016), "Seismic evaluation of I-shaped beam to box-column connections with top and seat plates by the component method", Sharif: Civil Eng., 322(21), 129-138.
  8. Balaguru, P.N. (1980), "Cost optimum design of doubly reinforced concrete beams", Build. Environ., 15(4), 219-222. https://doi.org/10.1016/0360-1323(80)90002-5
  9. Barros, M.H.F.M., Martins, R.A.F. and Barros, A.F.M. (2005), "Cost optimization of singly and doubly reinforced concrete beams with EC2-2001", Struct. Multidiscipl. Optimiz., 30(3), 236-242. https://doi.org/10.1007/s00158-005-0516-2
  10. Bazzaz, M., Kafi, M.A., Kheyroddin, A., Andalib, Z. and Esmaeili, H. (2014), "Evaluating the seismic performance of off-centre bracing system with circular element in optimum place", Int. J3. Steel Struct., 14(2), 293-304. https://doi.org/10.1007/s13296-014-2009-x
  11. Bertsekas, D.P. (2014), Constrained Optimization and Lagrange Multiplier Methods, Academic Press.
  12. Ceranic, B. and Fryer, C. (2000), "Sensitivity analysis and optimum design curves for the minimum cost design of singly and doubly reinforced concrete beams", Struct. Multidiscipl. Optimiz., 20(4), 260-268. https://doi.org/10.1007/s001580050156
  13. Chae, H. and Yun, Y. (2015), "Strut-tie model for two-span continuous RC deep beams", Comput. Concrete, Int. J., 16(3), 357-380. https://doi.org/10.12989/cac.2015.16.3.357
  14. Chakrabarty, B. (1992), "Models for optimal design of reinforced concrete beams", Comput. Struct., 42(3), 447-451. https://doi.org/10.1016/0045-7949(92)90040-7
  15. Chetchotisak, P., Teerawong, J., Yindeesuk, S. and Song, J. (2014), "New strut-and-tie-models for shear strength prediction and design of RC deep beams", Comput. Concrete, Int. J., 14(1), 19-40. https://doi.org/10.12989/cac.2014.14.1.019
  16. El Debs, A.L.H., Chaves Neto, A.C., Andreczevski Chaves, I., Squarcio, R.M.F. and Araki lira, S. (2005), "Optimization of cross section of reinforced concrete beam using experimental design", Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil.
  17. Eskandari, H. and Madadi, A. (2015), "Investigation of ferrocement channels using experimental and finite element analysis", Eng. Sci. Technol., Int. J., 18(4), 769-775. https://doi.org/10.1016/j.jestch.2015.05.008
  18. Fanaie, N., Aghajani, S. and Shamloo, S. (2012), "Theoretical assessment of wire rope bracing system with soft central cylinder", Proceedings of the 15th World Conference on Earthquake Engineering.
  19. Fanaie, N., Aghajani, S. and Dizaj, E.A. (2016), "Theoretical assessment of the behavior of cable bracing system with central steel cylinder", Adv. Struct. Eng., 19(3), 463-472. https://doi.org/10.1177/1369433216630052
  20. Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concrete Constr., Int. J., 5(6), 659-669.
  21. Fortin, M. and Glowinski, R. (2000), Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Elsevier.
  22. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., Int. J., 66(6), 737-748.
  23. Huedo, J.D., Martinez, J.M. and Montero, P.G. (2005), "Dimensioning of longitudinal reinforcements in concrete beams with a non-rectangular section and variable height", Spanish J. Agricul. Res., 3(4), 367-376. https://doi.org/10.5424/sjar/2005034-163
  24. Joshaghani, A., Moazenian, A. and Shuaibu, R.A. (2017), "Experimental study on the use of trass as a supplementary cementitious material in pervious concrete", J. Environ. Sci. Eng. A, 1, 39-52.
  25. Karamshahi, A., Alihoseini, Z., Mirzaei, J. and Jafarzadeh, A. (2017), "Interval sampling methods in Zagros forests using GIS", J. Forestry Res., 28(6), 1261-1266. https://doi.org/10.1007/s11676-017-0390-y
  26. Kaveh, A. and Shokohi, F. (2015), "Optimum design of laterallysupported castellated beams using CBO algorithm", Steel Compos. Struct., Int. J., 18(2), 305-324. https://doi.org/10.12989/scs.2015.18.2.305
  27. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017a), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Eartq. Struct., Int. J., 13(6), 531-538.
  28. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017b), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., Int. J., 63(2), 259-268.
  29. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., Int. J., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067
  30. Korouzhdeh, T., Eskandari-Naddaf, H. and Gharouni-Nik, M. (2017), "An improved ant colony model for cost optimization of composite beams", Appl. Artif. Intell., Int. J., 31(1), 44-63.
  31. Li, Y. and Chen, Y. (2010), "Beam structure optimization for additive manufacturing based on principal stress lines", Solid Freeform Fabrication Proceedings.
  32. Long, X. and Lee, C.K. (2015), "Improved strut-and-tie method for 2D RC beam-column joints under monotonic loading", Comput. Concrete, Int. J., 15(5), 807-831. https://doi.org/10.12989/cac.2015.15.5.807
  33. Madadi, A., Eskandari-Naddaf, H., Shadnia, R. and Zhang, L. (2018), "Characterization of ferrocement slab panels containing lightweight expanded clay aggregate using digital image correlation technique", Constr. Build. Mater., 180, 464-476. https://doi.org/10.1016/j.conbuildmat.2018.06.024
  34. Mansouri, I., Safa, M., Ibrahim, Z., Kisi, O., Tahir, M.M., Baharom, S. and Azimi, M. (2016), "Strength prediction of rotary brace damper using MLR and MARS", Struct. Eng. Mech., Int. J., 60(3), 471-488. https://doi.org/10.12989/sem.2016.60.3.471
  35. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M.M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 1-11.
  36. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
  37. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., Int. J., 27(5), 537-543.
  38. Nigdeli, S.M. and Bekdas, G. (2013), "Optimization of RC beams for various cost ratios of steel/concrete", Proceedings of the 4th European conference of civil engineering ECCIE.
  39. Ozturk, H.T., Durmus, A. and Durmus, A. (2012), "Optimum design of a reinforced concrete beam using artificial bee colony algorithm", Comput. Concrete, Int. J., 10(3), 295-306. https://doi.org/10.12989/cac.2012.10.3.295
  40. Paknahad, M., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., Int. J., 28(4), 483-494.
  41. Panjehpour, M., Ali, A.A.A., Voo, Y.L. and Aznieta, F.N. (2014), "Effective compressive strength of strut in CFRP-strengthened reinforced concrete deep beams following ACI 318-11", Computers and Concrete, 13(1), 135-147. https://doi.org/10.12989/CAC.2014.13.1.135
  42. Rahmanian, I., Lucet, Y. and Tesfamariam, S. (2014), "Optimal design of reinforced concrete beams: A review", Comput. Concrete, Int. J., 13(4), 457-482. https://doi.org/10.12989/cac.2014.13.4.457
  43. Safa, A., Rashidinejad, H.R., Khalili, M., Dabiri, S., Nemati, M., Mohammadi, M.M. and Jafarzadeh, A. (2016a), "Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease", Cytokine, 83, 147-157. https://doi.org/10.1016/j.cyto.2016.04.006
  44. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016b), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679
  45. Shah, S.N.R., Sulong, N.R., Khan, R., Jumaat, M.Z. and Shariati, M. (2016), "Behavior of industrial steel rack connections", Mech. Syst. Signal Processing, 70-71: 725-740. https://doi.org/10.1016/j.ymssp.2015.08.026
  46. Sharafi, P., Hadi, M.N. and Teh, L.H. (2012), "Geometric design optimization for dynamic response problems of continuous reinforced concrete beams", J. Comput. Civil Eng., 28(2), 202-209. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000263
  47. Shariat, M., Eskandari-Naddaf, H., Tayyebinia, M. and Sadeghian, M. (2018a), "Finite Element Modeling of Shear Strength for Concrete Deep Beams (Part II)", Materials Today: Proceedings, 5(2), 5521-5528. https://doi.org/10.1016/j.matpr.2017.12.142
  48. Shariat, M., Eskandari-Naddaf, H., Tayyebinia, M. and Sadeghian, M. (2018b), "Sensitivity Analysis of Reinforced Concrete Deep Beam by STM and FEM (Part III)", Materials Today: Proceedings, 5(2), 5529-5535. https://doi.org/10.1016/j.matpr.2017.12.143
  49. Shariati, M., Ramli Sulong, N.H., Maleki, S. and Arabnejad Kh, M.M. (2010), "Experimental and analytical study on channel shear connectors in light weight aggregate concrete", Proceedings of the 4th International Conference on Steel & Composite Structures, Sydney, Australia, July.
  50. Standard, B. (1985), "8110: Part 1, Structural use of concrete-code of practice for design and construction", British Standards Institute, London UK, pp. 3-8.
  51. Tahouni, S. (2005), Designing Concrete Structures Based on Iranian Concrete Code.
  52. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. https://doi.org/10.12989/scs.2014.17.5.623
  53. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 1-9.
  54. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., Int. J., 27(3), 389-399.
  55. Zandi, Y. and Toghroli, A. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447.

피인용 문헌

  1. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.155
  2. Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.347
  3. Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.377
  4. The effect of RBS connection on energy absorption in tall buildings with braced tube frame system vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.393
  5. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.743
  6. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.355
  7. Influence of porosity and cement grade on concrete mechanical properties vol.10, pp.5, 2018, https://doi.org/10.12989/acc.2020.10.5.393
  8. Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
  9. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes vol.11, pp.3, 2018, https://doi.org/10.3390/nano11030571
  10. Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method vol.9, pp.9, 2021, https://doi.org/10.3390/math9091048
  11. Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors vol.28, pp.2, 2018, https://doi.org/10.12989/sss.2021.28.2.167
  12. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method vol.40, pp.6, 2018, https://doi.org/10.12989/scs.2021.40.6.853