과제정보
연구 과제번호 : Second-order Analysis of Shallow Dome Structures made of Tapering Members, Second-Order Analysis of Flexible Steel Cable Nets Supporting Debris, Development of an Energy Absorbing Device for Flexible Rock-Fall Barriers, Advanced Numerical Analyses for Building Structures Using High Performance Steel Materials
연구 과제 주관 기관 : Council of the Hong Kong SAR Government, Hong Kong Branch of the Chinese National Engineering Research Centre
참고문헌
- AISC360 (2016), Specification for Structural Steel Buildings; AISC, Inc., One East Wacker Driver, Suite 700, Chicago, IL, USA, 60601-1802.
- AS4100 (2000), AS4100-1998: Steel Structures; Standard Australia, Sydney.
- Auricchio, F. and Taylor, R.L. (1994), "A generalized elastoplastic plate theory and its algorithmic implementation", International J. Numer. Method. Eng., 37(15), 2583-2608. https://doi.org/10.1002/nme.1620371506
- Auricchio, F. and Taylor, R.L. (1995), "Two material models for cyclic plasticity: nonlinear kinematic hardening and generalized plasticity", Int. J. Plastic., 11(1), 65-98. https://doi.org/10.1016/0749-6419(94)00039-5
- Biglari, A., Harrison, P. and Bicanic, N. (2014), "Quasi-hinge beam element implemented within the hybrid force-based method", Comput. Struct., 137, 31-46. https://doi.org/10.1016/j.compstruc.2013.10.016
- Chan, S.L. and Zhou, Z.H. (1994), "Pointwise equilibrating polynomial element for nonlinear analysis of frames", J. Struct. Eng., 120(6), 1703-1717. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1703)
- Chan, S.L. and Zhou, Z.H. (1995), "Second-order elastic analysis of frames using single imperfect element per member", J. Struct. Eng.-ASCE, 121(6), 939-945. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:6(939)
- Chiorean, C.G. (2017), "Second-order flexibility-based model for nonlinear inelastic analysis of 3D semi-rigid steel frameworks", Eng. Struct., 136, 547-579. https://doi.org/10.1016/j.engstruct.2017.01.040
- Dai, X. and Lam, D. (2014), "A numerical study on the effect of concrete infill and intumescent coating to fire-resistant behaviour of stub elliptical steel hollow sections under axial compression", Adv. Steel Constr., 10(3), 310-324.
- Ding, F.X., Ding, X.Z., Liu, X.M., Wang, H.B., Yu, Z.W. and Fang, C.J. (2017), "Mechanical behavior of elliptical concretefilled steel tubular stub columns under axial loading", Steel Compos. Struct., Int. J., 25(3), 375-388.
- Du, Z.L., Liu, Y.P. and Chan, S.L. (2017), "A second-order flexibility-based beam-column element with member imperfection", Eng. Struct., 143, 410-426. https://doi.org/10.1016/j.engstruct.2017.04.023
- Eurocode 3 (2005), EN 1993-1-1: Design of steel structures -General rules and rules for buildings; European Committee for Standardization.
- Farahi, M. and Erfani, S. (2017), "Employing a fiber-based finitelength plastic hinge model for representing the cyclic and seismic behaviour of hollow steel columns", Steel Compos. Struct., Int. J., 23(5), 501-516. https://doi.org/10.12989/scs.2017.23.5.501
- Hu, F., Shi, G. and Shi, Y. (2017), "Experimental study on seismic behavior of high strength steel frames: Global response", Eng. Struct., 131, 163-179. https://doi.org/10.1016/j.engstruct.2016.11.013
- Keykha, A.H. (2017), "CFRP strengthening of steel columns subjected to eccentric compression loading", Steel Compos. Struct., Int. J., 23(1), 87-94. https://doi.org/10.12989/scs.2017.23.1.087
- Khaloo, A., Nozhati, S., Masoomi, H. and Faghihmaleki, H. (2016), "Influence of earthquake record truncation on fragility curves of RC frames with different damage indices", J. Build. Eng., 7, 23-30. https://doi.org/10.1016/j.jobe.2016.05.003
- Kostic, S.M., Filippou, F.C. and Lee, C.-L. (2013), "In efficient beam-column element for inelastic 3D frame analysis" In: Computational Methods in Earthquake Engineering, Springer, pp. 49-67.
- Kostic, S.M., Filippou, F.C. and Deretic-Stojanovic, B. (2016), "Generalized plasticity model for inelastic RCFT column response", Comput. Struct., 168, 56-67. https://doi.org/10.1016/j.compstruc.2016.02.006
- Liew, J.R., White, D.W. and Chen, W.F. (1993a), "Second-order refined plastic-hinge analysis for frame design. Part I", Journal of Structural Engineering, 119(11), 3196-3216. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3196)
- Liew, J.R., White, D.W. and Chen, W.F. (1993b), "Second-order refined plastic-hinge analysis for frame design. Part II", J. Struct. Eng., 119(11), 3217-3236. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:11(3217)
- Liu, Y.P. and Chan, S.L. (2011), "Second-Order and Advanced Analysis of Structures Allowing for Load and Construction Sequences", Adv. Struct. Eng., 14(4), 635-646. https://doi.org/10.1260/1369-4332.14.4.635
- Liu, S.W., Liu, Y.P. and Chan, S.L. (2014), "Direct analysis by an arbitrarily-located-plastic-hinge element - Part 1: Planar analysis", J. Constr. Steel Res., 103, 303-315. https://doi.org/10.1016/j.jcsr.2014.07.009
- Liu, S.W., Bai, R., Chan, S.L. and Liu, Y.P. (2016), "Second-order direct analysis of domelike structures consisting of tapered members with I-sections", J. Struct. Eng., 142(5), 04016009. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001464
- Lubliner, J., Taylor, R.L. and Auricchio, F. (1993), "A new model of generalized plasticity and its numerical implementation", Int. J. Solids Struct., 30(22), 3171-3184. https://doi.org/10.1016/0020-7683(93)90146-X
- NIDA (2017), User's Manual, Nonlinear Integrated Design and Analysis; NIDA 9.0 HTML Online Documentation. http://www.nidacse.com/manuals/nida9.pdf
- Nguyen, P.C. and Kim, S.E. (2016), "Advanced analysis for planar steel frames with semi-rigid connections using plastic-zone method", Steel Compos. Struct., Int. J., 21(5), 1121-1144. https://doi.org/10.12989/scs.2016.21.5.1121
- Orbison, J.G., McGuire, W. and Abel, J.F. (1982), "Yield surface applications in nonlinear steel frame analysis", Comput. Method. Appl. Mech. Eng., 33(1-3), 557-573. https://doi.org/10.1016/0045-7825(82)90122-0
- Parghi, A. and Alam, M.S. (2017), "Seismic collapse assessment of non-seismically designed circular RC bridge piers retrofitted with FRP composites", Compos. Struct., 160, 901-916. https://doi.org/10.1016/j.compstruct.2016.10.094
- Rasmussen, K.J., Zhang, X. and Zhang, H. (2016), "Beamelement-based analysis of locally and/or distortionally buckled members: Theory", Thin-Wall. Struct., 98, 285-292. https://doi.org/10.1016/j.tws.2015.06.020
- Ray, T., Schachter-Adaros, M. and Reinhorn, A.M. (2015), "Flexibility-Corotational Formulation of Space Frames with Large Elastic Deformations and Buckling", Comput.-Aided Civil Infrastruct. Eng., 30(1), 54-67. https://doi.org/10.1111/mice.12084
- Saritas, A. and Koseoglu, A. (2015), "Distributed inelasticity planar frame element with localized semi-rigid connections for nonlinear analysis of steel structures", Int. J. Mech. Sci., 96, 216-231.
- Thai, H.T., Uy, B., Kang, W.H. and Hicks, S. (2016), "System reliability evaluation of steel frames with semi-rigid connections", J. Constr. Steel Res., 121, 29-39. https://doi.org/10.1016/j.jcsr.2016.01.009
- Tirca, L., Chen, L. and Tremblay, R. (2015), "Assessing collapse safety of CBF buildings subjected to crustal and subduction earthquakes", J. Constr. Steel Res., 115, 47-61. https://doi.org/10.1016/j.jcsr.2015.07.025
- Vogel, U. (1985), "Calibrating Frames", Stahlbau, 54, 295-311.
- Yan, B., Liu, J. and Zhou, X. (2017), "Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns", Steel Compos. Struct., Int. J., 25(5), 545-556.
- Yu, Y. and Zhu, X. (2016), "Nonlinear dynamic collapse analysis of semi-rigid steel frames based on the finite particle method", Eng. Struct., 118, 383-393. https://doi.org/10.1016/j.engstruct.2016.03.063
- Zubydan, A.H., ElSabbagh, A.I., Sharaf, T. and Farag, A.E. (2018), "Inelastic large deflection analysis of space steel frames using an equivalent accumulated element", Eng. Struct., 162, 121-134. https://doi.org/10.1016/j.engstruct.2018.01.059
피인용 문헌
- Plastic analysis of steel arches and framed structures with various cross sections vol.38, pp.3, 2021, https://doi.org/10.12989/scs.2021.38.3.257