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ON S-COHERENCE

DRriss BENNIS AND MOHAMMED EL HAJOUI

ABSTRACT. Recently, Anderson and Dumitrescu’s S-finiteness has at-
tracted the interest of several authors. In this paper, we introduce the
notions of S-finitely presented modules and then of S-coherent rings which
are S-versions of finitely presented modules and coherent rings, respec-
tively. Among other results, we give an S-version of the classical Chase’s
characterization of coherent rings. We end the paper with a brief dis-
cussion on other S-versions of finitely presented modules and coherent
rings. We prove that these last S-versions can be characterized in terms
of localization.

1. Introduction

Throughout this paper all rings are commutative with identity; in particular,
R denotes such a ring, and all modules are unitary. S will be a multiplicative
subset of R. We use (I : a), for an ideal I and an element a € R, to denote the
quotient ideal {z € R; za € I}.

According to [3], an R module M is called S-finite if there exists a finitely
generated submodule N of M such that sM C N for some s € S. Also, from
[3], an R-module M is called S-Noetherian if each submodule of M is S-finite.
In particular, R is said to be an S-Noetherian ring, if it is S-Noetherian as an
R-module; that is, every ideal of R is S-finite. It is clear that every Noetherian
ring is S-Noetherian.

The notions of S-finite modules and of S-Noetherian rings were introduced
by Anderson and Dumitrescu motivated by the works done in [8] and [4]. They
succeeded to generalize several well-known results on Noetherian rings including
the classical Cohen’s result and Hilbert basis theorem under an additional
condition. Since then S-finiteness has attracted the interest of several authors
(see for instance [1,2,10-13]). Recently, motivated by the work of Anderson
and Dumitrescu, S-versions of some classical notions have been introduced
(see for instance [2,10]). In this paper we are interested in S-versions of finitely
presented modules and coherent rings which are called, respectively, S-finitely
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presented modules and S-coherent rings (see Definitions 2.1 and 3.1). We prove
that the S-coherent rings have a characterization similar to the classical one
given by Chase for coherent rings [5, Theorem 2.2]. However as the notion
of S-coherent rings defined here cannot be characterized by localization we
introduce another notion that does have this characterization.

The organization of the paper is as follows: In Section 2, we introduce and
study an S-version of finitely presented modules. We call it an S-finitely pre-
sented module (see Definition 2.1). Then, we study the behavior of S-finiteness
in short exact sequences (see Theorem 2.4). We end Section 2 with some change
of rings results (see Proposition 2.6 and Corollary 2.7). Section 3 is devoted
to the S-version of coherent rings which are called S-coherent rings (see Def-
inition 3.3). Our main result represents the S-counterpart of Chase’s result
[5, Theorem 2.2] (see Theorem 3.8). Also an S-version of coherent modules is
introduced (see Definition 3.1 and Proposition 3.2). We end the paper with a
short section which presents another S-version of S-finiteness (see Definitions
4.1 and 4.4). We prove that these notions can be characterized in terms of
localization (see Proposition 4.3 and Theorem 4.7). We end the paper with re-
sults which relate S-finiteness with the notion of S-saturation (see Propositions
4.9 and 4.8 and Corollary 4.10).

2. S-finitely presented modules

In this section, we introduce and investigate an S-version of the classical
finitely presented modules. Another version is discussed in Section 4.

Definition 2.1. An R-module M is called S-finitely presented, if there exists
an exact sequence of R-modules 0 — K — F — M — 0, where K is
S-finite and F is a finitely generated free R-module.

Clearly, every finitely presented module is S-finitely presented. However,
the converse does not hold in general. For that, it suffices to note that when R
is a non-Noetherian S-Noetherian ring, then there is an S-finite ideal I which
is not finitely generated. Then, the R-module R/I is S-finitely presented but
it is not finitely presented.

Also, it is evident that every S-finitely presented module is finitely gener-
ated. To give an example of a finitely generated module which is not S-finitely
presented, it suffices to consider an ideal I which is not S-finite and then use
Proposition 2.3 given hereinafter.

Definition 2.1 does not assume that the free module is S-finite because the
notions of finitely generated free and free and S-finite free modules coincide,
as seen in the following proposition.

Proposition 2.2. Every S-finite free R-module is finitely generated.

Proof. Let M = @, ; Re; be an S-finite free R-module, where (e;)icy is a basis
of M and I is an index set. Then, there exist a finitely generated R-module NV
and an s € S such that sM C N C M. Then, N = Rmy + - - - + Rm,, for some
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mi,...,my € M (n >0 is an integer). For every k € {1,...,n}, there exists
a finite subset Jj, of I such that my = ZjeJk Agjej. Let J =J;_; Ji. Then,
the finitely generated R-module M’ = @, ; Re; contains N. We show that
M’ = M by contradiction. There exists an ig € I\J such that e;, ¢ M’. But
sei, € N C M’ and so se;, = ZjeJ A;.ej for some )\; € R. This is impossible
since (e;)ier is a basis. |

Similarly to the proof of Proposition 2.2 above, one can prove that any S-
finite torsion-free module cannot be decomposed into an infinite direct sum of
non-zero modules. This shows that any S-finite projective module is countably
generated by Kaplansky [9, Theorem 1]. Then, naturally one would ask of the
existence of an S-finite projective module which is not finitely generated. For
this, consider the Boolean ring R = H;)il k;, where k; is the field of two elements
for every ¢ € N. Consider the projective ideal M = @fil k;, the direct sum
of principal projective ideals, and consider the element e = (1,0,0,...) (see
[6, Example 2.7]). Then, S = {1,e} is a multiplicative subset of R. Since
eM = kq is a finitely generated R-module, M is the desired example of S-finite
projective module which is not finitely generated.

However, determining rings over which every S-finite projective module is
finitely generated could be of interest. It is worth noting that rings over which
every projective module is a direct sum of finitely generated modules satisfy
this condition. These rings were investigated in [14].

The next result shows that, as in the classical case [7, Lemma 2.1.1], an S-
finitely presented module does not depend on one specific short exact sequence
of the form given in Definition 2.1.

Proposition 2.3. An R-module M is S-finitely presented if and only of M s

finitely generated and, for every surjective homomorphism of R-modules F N
M — 0, where F is a finitely generated free R-module, ker f is S-finite.

Proof. (<) Obvious.

(=) Since M is S-finitely presented, there exists an exact sequence of R-
modules 0 — K — F' —» M — 0, where K is S-finite and F’ is finitely
generated and free. Then, by Schanuel’s lemma, K @& F = ker f @ F’, then ker f
is S-finite. O

The following result represents the behavior of S-finiteness in short exact
sequences. It is a generalization of [7, Theorem 2.1.2] for modules with A-
dimension at most 1. Note that one can give an S-version of the classical
A-dimension (see [7, page 32]). However, here we prefer to focus on the notion
of S-finitely presented modules, and a discussion on the suitable S-version of
the A-dimension could be the subject of a further work.

Theorem 2.4. Let 0 —s M’ 15 M %5 M"” — 0 be an ezact sequence of
R-modules. The following assertions hold:
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(1) If M" and M" are S-finite, then M is S-finite.
In particular, every finite direct sum of S-finite modules is S-finite.

(2) If M" and M" are S-finitely presented, then M is S-finitely presented.
In particular, every finite direct sum of S-finitely presented modules is
S-finitely presented.

(3) If M is S-finite, then M" is S-finite.
In particular, a direct summand of an S-finite module is S-finite.

(4) If M’ is S-finite and M is S-finitely presented, then M" is S-finitely
presented.

(5) If M" is S-finitely presented and M is S-finite, then M’ is S-finite.

Proof. (1) Since M" is S-finite, there exist a finitely generated submodule N of
M" and an s € S such that sM” C N”. Let N” = >""" | Re; for some e; € M"
and n € N. Since g is surjective, there exists an m; € M such that g(m;) = e;
for every i € {1,...,n}. Let z € M, so st € N = g~ 1(N”). Then g(sz) €
g(N) = N, and s0 glsz) = S, aer = S0, anglme) = g(Sy ).
Then, g(sz — Y1 aym;) = 0. Thus, (sz — > i, a;m;) € ker g = Imf which
is S-finite. So there exist a finitely generated submodule N’ of Imf and an
s’ € S such that s'Imf C N’. Then, s'sz € N’ + 3" | Rm; and so s'sM is a
submodule of N” + Y7 | Rm,; which is a finitely generated submodule of M.
Therefore, M is S-finite.

(2) Since M’ and M" are S-finitely presented, there exist two short exact
sequences: 0 — K' — F/ — M' — 0and 0 — K" — F" — M" —
0, with K’ and K" are S-finite R-modules and F’" and F" are finitely generated
free R-modules. Then, by the Horseshoe Lemma, we get the following diagram:

0
M
A
\

|
0—sF - - >FOF' - —=F'— 5

|

0 0

0 M’ M 0

0— K ———>K———>K'— >0
0 0 0

By the first assertion, K is S-finite. Therefore, M is S-finitely presented.

(3) Obvious.

(4) Since M is S-finitely presented, there exists a short exact sequence of
R-modules 0 — K — F — M — 0, where K is S-finite and F' is a finitely
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generated free R-module. Consider the following pullback diagram:

0 0
0 M’ M M 0
A
|
|
0——D——>F—M'"——0
K——K
0 0

By (1), D is S-finite. Therefore, M" is S-finitely presented.

(5) Since M" is S-finitely presented, there exists a short exact sequence
0 — K — F — M" — 0 where K is S-finite and F is a finitely generated
free R-module. Consider the following pullback diagram:

0

M" 0

0 M’

0
M
A
|
|
0O— M —D— —>F—>0
K
0

:K

0

Since F is free, D 2 M' @ F, and so D is S-finite (since M’ and F' are S-finite).
Therefore, M’ is S-finite. O

As a simple consequence, we get the following result which extends [7, Corol-
lary 2.1.3].

Corollary 2.5. Let Ny and Ns be two S-finitely presented submodules of an
R-module. Then, N1+ N> is S-finitely presented if only if Ny N Ny is S-finite.

Proof. Use the short exact sequence of R-modules 0 — Ny N Ny — Ny &
Ny — Ny + Ny — 0. O
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We end this section with the following change of rings results.
The following result extends [7, Theorem 2.1.7].

Proposition 2.6. Let A and B be rings, let ¢ : A — B be a ring homomor-
phism making B a finitely generated A-module and let V' be a multiplicative
subset of A such that 0 & (V). Every B-module which is V -finitely presented
as an A-module it is ¢p(V')-finitely presented as a B-module.

Proof. Let M be a B-module which is V-finitely presented as an A-module.
Then M is a finitely generated A-module, so M is a finitely generated B-
module. Thus there is an exact sequence of B-modules 0 — K — B" —
M — 0, where n > 0 is an integer. This sequence is also an exact sequence of
A-modules. Since M is an V-finitely presented A-module and B™ is a finitely
generated A-module (since B is a finitely generated A-module), K is a V-finite
A-module (cf. Part 5 of Theorem 2.4), and so K is a ¢(V)-finite B-module.
Therefore, M is a ¢(V')-finitely presented B-module. O

The following result extends [7, Theorem 2.1.8(2)].

Proposition 2.7. Let I be an ideal of R and let M be an R/I-module. Assume
that INS =0 so that T :={s+1 € R/I; s € S} is a multiplicative subset of
R/I. Then,
(1) M is an S-finite R-module if and only if M is a T-finite R/I-module.
(2) If M is an S-finitely presented R-module, then M is a T-finitely pre-
sented R/I-module. The converse holds when I is an S-finite ideal of
R.

Proof. (1) Easy.
(2) Use the canonical ring surjection R — R/I and Proposition 2.6.
Conversely, if M is a T-finitely presented R/I-module, then, there is an
exact sequence of R/I-modules, and then of R-modules

0— K— (R/I)" — M —0,

where n > 0 is an integer and K is a T-finite R/I-module. By the first assertion,
K is also an S-finite R-module. And since I is an S-finite ideal of R, (R/I)"
is an S-finitely presented R-module. Therefore, by Theorem 2.4(4), M is an
S-finitely presented R-module. O

3. S-coherent rings

Before giving the definition of S-coherent rings, we give, following the clas-
sical case, the definition of S-coherent modules.

Definition 3.1. An R-module M is said to be S-coherent, if it is finitely
generated and every finitely generated submodule of M is S-finitely presented.

Clearly, every coherent module is S-coherent.
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The reason why we consider finitely generated submodules rather than S-
finite submodules is explained in Remark 3.4(4).

The following result studies the behavior of S-coherence of modules in short
exact sequences. It generalizes [7, Theorem 2.2.1].

Proposition 3.2. Let 0 — P TN S 0 be an exact sequence of
R-modules. The following assertions hold:

(1) If P is finitely generated and N is S-coherent, then M is S-coherent.
(2) If M is coherent and P is S-coherent, then is N S-coherent.
(3) If N is S-coherent and P is finitely generated, then P is S-coherent.

Proof. (1) It is clear that M is finitely generated. Let M’ be a finitely generated
submodule of M. There exist two short exact sequences of R-modules 0 —
K—R'—P-—0and0 — K' — R™ — M’ — 0, where n and m
are two positive integers. Then, by the Horseshoe Lemma, we get the following
diagram:

0 0 0
0——=P——=g ' (M)——=M —0
A
\

\
0——=R'— —>R"" - — > R" —>
0 K K" K’ 0
0 0 0

Since g7!(M’) is a finitely generated submodule of the S-coherent module N,
g~ t(M’) is S-finitely presented. Then, using Theorem 2.4(5), K" is S-finite,
and so K’ is S-finite. Therefore, M’ is S-finitely presented.

(2) Clearly N is finitely generated. Let N’ be a finitely generated submodule

of N. Consider the exact sequence 0 — Ker(g/n+) N g(N') — 0.
Then, g(N') is a finitely generated submodule of the coherent module M. Then,
g(N’) is finitely presented. Then, Ker(g,n-) is finitely generated, and since P
is S-coherent, Ker(g,y-) is S-finitely presented. Therefore, by (2) of Theorem
2.4, N' is S-finitely presented.

(3) Evident since a submodule of P can be seen as a submodule of N. [

The following questions raise naturally: Let 0 — P TN S 0
be an exact sequence of R-modules. When are the following assertions true?

(1) If P is S-finitely generated and N is S-coherent, then M is S-coherent.
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M and P are S-coherent, then NN is S-coherent.
Every finite direct sum of S-coherent modules is S-coherent.

Now we set the definition of an S-coherent ring.

Definition 3.3. A ring R is called S-coherent, if it is S-coherent as an R-
module; that is, if every finitely generated ideal of R is S-finitely presented.

Remark 3.4.

(1)

Note that every S-Noetherian ring is S-coherent. Indeed, this follows
from the fact that when R is S-Noetherian, every finitely generated
free R-module is S-Noetherian (see the discussion before [3, Lemma
3]). Next, in Example 3.6, we give an example of an S-coherent ring
which is not S-Noetherian.

Clearly, every coherent ring is S-coherent. The converse is not true in
general. As an example of an S-coherent ring which is not coherent, we
consider the trivial extension A = Z x (Z/2Z)™ and the multiplicative
set V= {(2,0)"; n € N}. Since (0 : (2,0)) = 0 x M is not finitely
generated, A is not coherent. Now, for every ideal I of A, (2,0)I is
finitely generated; in fact, (2,0)] = 2J x 0, where J = {a € Z; 3b €
(2/22)™ (a,b) € I}. Since J is an ideal of Z, J = aZ for some
element a € Z. Then, (2,0)] = 2J x 0 = (2a,0)A. This shows that A
is V-Noetherian and so V-coherent.

It is easy to show that, if M is an S-finitely presented R-module, then
Mg is a finitely presented Rg-module. Thus, if R is an S-coherent
ring, Rg is a coherent ring. However, it seems not evident to give a
condition so that the converse holds, as done for S-Noetherian rings
(see [3, Proposition 2(f)]). In Section 4, we give another S-version of
coherent rings which can be characterized in terms of localization.
One would propose for an S-version of coherent rings, the following
condition “S-C": every S-finite ideal of R is S-finitely presented”. How-
ever, if R satisfies the condition S-C', then in particular, every S-finite
ideal of R is finitely generated. So, every S-finite ideal of R is finitely
presented; in particular, R is coherent. This means that the notion of
rings with the condition S-C' cannot be considered as an S-version of
the classical coherence. Nevertheless, these rings could be of particular
interest as a new class of rings between the class of coherent rings and
the class of Noetherian rings.

To give an example of a coherent ring which does not satisfy the
condition S-C, one could consider the ring B = [[:2, k;, where k;
is the field of two elements for every ¢+ € N, and the multiplicative
subset V = {1,e} of B, where e = (1,0,0,...) € B. Indeed, the ideal
B = @;°, k; is V-finite but not finitely generated.

Also, note that the following condition “S-c: every S-finite ideal of
R is finitely generated” could be of interest. Indeed, clearly one can
show the following equivalences:
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(a) A ring R satisfies the condition S-C if and only if R is coherent
and satisfies the condition S-c.

(b) A ring R is coherent if and only if R is S-coherent and satisfies
the condition S-c.

(¢) Aring R is Noetherian if and only if R is S-Noetherian and satisfies
the condition S-c.

To give an example of an S-coherent ring which is not S-Noetherian, we use
the following result.

Proposition 3.5. Let R = [[\_, R; be a direct product of rings R; (n € N)
and S =T[}_, S; be a cartesian product of multiplicative sets S; of R;. Then,
R is S-coherent if and only if R; is S;-coherent for everyi € {1,...,n}.

Proof. The result is proved using standard arguments. ([

Example 3.6. Consider the ring A given in Remark 3.4(2). Let B be a
coherent ring which has a multiplicative set W such that Byy is not Noetherian.
Then, A x B is V x W-coherent (by Proposition 3.5), but it is not V x W-
Noetherian (by [3, Proposition 2(f)]).

Now, we give our main result. It is the S-counterpart of the classical Chase’s
result [5, Theorem 2.2]. As Theorem 3.8 mimics the proof of [7, Theorem 2.3.2],
we use the following lemma.

Lemma 3.7 ([7, Lemma 2.3.1]). Let R be a ring, let I = (uy,ua,...,u,) be a
finitely generated ideal of R (r € N) and let a € R. Set J = I+ Ra. Let F be a

free module on generators x1,xs,...,2r41 and let 0 — K — F L J—0,
be an exact sequence with f(x;) = u; (1 < i < 7r) and f(z,4+1) = a. Then
there exists an ezact sequence 0 — K NF' — K L (I :a) — 0, where
' = @221 in.

Theorem 3.8. The following assertions are equivalent:

(1) R is S-coherent.

(2) (I:a) is an S-finite ideal of R for every finitely generated ideal I of R
and a € R.

(3) (0:a) is an S-finite ideal of R for every a € R and the intersection of
two finitely generated ideals of R is an S-finite ideal of R.

Proof. The proof is similar to that of [5, Theorem 2.2] (see also [7, Theorem
2.3.2]). However, for the sake of completeness we give its proof here.

(1)=(2) Let I be a finitely generated ideal of R. Then, I is S-finitely
presented. Consider J = I + Ra, where a € R. Then, J is finitely generated,
and so it is S-finitely presented. Thus, there exists an exact sequence 0 —
K — R — J — 0, where K is S-finite. By Lemma 3.7, there exists a
surjective homomorphism ¢ : K — (I : a) which shows that (I : a) is S-finite.

(2)=(1) This is proved by induction on n, the number of generators of a
finitely generated ideal I of R. For n = 1, use assertion (2) and the exact
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sequence 0 — (0 : J) — R — I — 0. For n > 1, use assertion (2) and
Lemma 3.7.

(1)=(3) Since R is S-coherent, Proposition 2.3 applied on the exact sequence
0 — (0:a) — R — aR — 0 shows that the ideal (0 : @) is S-finite. Now,
let I and J be two finitely generated ideals of R. Then, I 4+ J is finitely
generated and so S-finitely presented. Then, applying Theorem 2.4(5) on the
short the exact sequence 0 — INJ — I & J — I+ J — 0, we get that
INJis S-finite.

(3)=-(1) This is proved by induction on the number of generators of a finitely
generated ideal I of R, using the two short exact sequences used in (1) =
(3). O

It is worth noting that, in Chase’s paper [5], coherent rings were charac-
terized using the notion of flat modules. Then, naturally one can ask of an
S-version of flatness that characterizes S-coherent rings similarly to the classi-
cal case. We leave it as an interesting open question.

Also, one could ask, as done in the classical case, when does the condition
“R is S-coherent” implies (and then equivalent to) the condition “every finitely
presented R-module is S-coherent”. It is clear that this hold true if R satisfies
the condition “R™ is an S-coherent R-module for every positive integer n”.
However, in general, the equivalent deserves investigating.

We end this section with some change of rings results.

The following results extends [7, Theorem 2.4.1].

Proposition 3.9. Let I be an S-finite ideal of R. Assume that INS =0 so
that T := {s+ I € R/I; s € S} is a multiplicative subset of R/I. Then, an
R/I-module M is T-coherent if and only if it is an R-module S-coherent. In
particular, the following assertions hold:

(1) If R is an S-coherent ring, then R/I is a T-coherent ring.
(2) If R/I is a T-coherent ring and I is an S-coherent R-module, then R
is an S-coherent ring.

Proof. Use Proposition 2.7. (]

Next result generalizes [7, Theorem 2.4.2]. It studies the transfer of S-
coherence under localizations.

Lemma 3.10. Let f : A — B be a ring homomorphism such that B is a
flat A-module, and let V' be a multiplicative set of A. If an A-module M is
V-finite (resp., a V-finitely presented), then M ® o B is an f(V)-finite (resp.,
f(V)-finitely presented) B-module.

Proof. Follows using the fact that flatness preserves injectivity. O

Proposition 3.11. If R is S-coherent, then R is an St-coherent ring for
every multiplicative set T of R.
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Proof. Let J be a finitely generated ideal of Rp. Then, there is a finitely
generated ideal I of R such that J = I. Since R is S-coherent, I is S-finitely
presented. Then, using Lemma 3.10, the ideal J = I ® g Ry of Ry is Sp-finitely
presented, as desired. O

4. Another S-version of finiteness

In this short section, we present another S-version of S-finiteness and we
prove that this notion can be characterized in terms of localization.

The following definition gives another S-version of finitely presented mod-
ules.

Definition 4.1. An R module M is called c-S-finitely presented, if there exists
a finitely presented submodule N of M such that sM C N C M for some s € S.

Remark 4.2.

(1) Clearly, every finitely presented module is c-S-finitely presented. How-
ever, the converse does not hold in general. For that it suffices to
consider a coherent ring which has an S-finite module which is not
finitely generated. An example of a such ring is given in Remark 3.4
(4).

(2) The inclusions in Definition 4.1 complicate the study of the behavior of
c-S-finitely presented modules in short exact sequences as done in The-
orem 2.4. This is why we think that c-S-finitely presented modules will
be mostly used by commutative rings theorists rather than researchers
interested in notions of homological algebra. This is the reason behind
the use of the letter “c” in “c-S-finitely presented”.

(3) It seems that there is not any relation between the two notions of c-S-
finitely presented and S-finitely presented modules. Nevertheless, we
can deduce that in a c-S-coherent ring (defined below), every S-finitely
presented ideal is c-S-finitely presented.

It is well-known that if, for an R-module M, Mg is a finitely presented
Rg-module, then there is a finitely presented R-module N such that Mg =
Ng. This result doesn’t generalize to S-finitely presented modules because the
module N which satisfies Mg = Ng is not necessarily a submodule of M. For
c-S-finitely presented modules we give the following result.

Proposition 4.3.
(1) If an R-module M is c-S-finitely presented, then Mg is a finitely pre-
sented Rg-module.
(2) A finitely generated R-module M is c-S-finitely presented if and only
if there is a finitely presented submodule N of M such that Mg = Ng.

Proof. (1) Obvious.
(2) (=) Clear.
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(<) Since M is finitely generated and Mg = Ng, there is an s € S such that
sM C N, as desired. O

Now we define the other S-version of the classical coherence of rings.

Definition 4.4. A ring R is called c-S-coherent, if every S-finite ideal of R is
S-finitely presented.

Clearly, every coherent ring is c-S-coherent. The converse is not true in
general. The ring given in Remark 3.4(2) can be used as an example of a
c-S-coherent ring which is not coherent.

Also, it is evident that every S-Noetherian ring is c¢-S-coherent. As done in
Example 3.6, we use the following result to give an example of a c-S-coherent
ring which is not S-Noetherian.

Proposition 4.5. Let R = [[;_, R; be a direct product of rings R; (n € N)
and S =[], Si be a cartesian product of multiplicative sets S; of R;. Then,
R is c-S-coherent if and only if R; is c-S;-coherent for every i € {1,...,n}.

Proof. The result is proved using standard arguments. O

Example 4.6. Consider the ring A given in Remark 3.4(2) (it is ¢-V-coherent
but not coherent). Let B be a coherent ring which has a multiplicative set
W such that By is not Noetherian. Then, A x B is ¢-V x W-coherent (by
Proposition 4.5), but it is not V' x W-Noetherian (by [3, Proposition 2(f)]).

The following result gives a characterization of c-S-coherent rings in terms
of localization.

Theorem 4.7. The following assertions are equivalent:
(1) R is c-S-coherent.
(2) FEwery finitely generated ideal of R is ¢-S-finitely presented.
(3) For every finitely generated ideal I of R, there is a finitely presented
ideal J C I such that Is = Jg. In particular, Rs is a coherent ring.

Proof. (1)=(2)=-(3) Straightforward.

(3)=(1) Let I be an S-finite ideal of R. Then, there exist an s € S and a
finitely generated ideal J of R such that sI C J C I. By assertion (3), there
is a finitely presented ideal K C J such that Kg = Jg. Then, thereisat € S
such that tJ C K. Therefore, tsI C K C I, as desired. O

We end the paper with a result which relates c-S-coherent rings with the
notion of S-saturation.

In [3], the notion of S-saturation is used to characterize S-Noetherian rings.
Assume that R is an integral domain. Let Sats(I) denotes the S-saturation of
an ideal I of R; that is, Sats(I) := IRsNR. In [3, Proposition 2(b)], it is proved
that if Satg(I) is S-finite, then I is S-finite and Sats(I) = (I : s) for some
s € S. This fact was used to prove that a ring R is S-Noetherian if and only if
Rs is Noetherian and, for every finitely generated ideal of R, Sats(I) = (I : s)
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for some s € S (see [3, Proposition 2(f)]). The following result shows that the
implication of [3, Proposition 2(b)] is in fact an equivalence in more general
context.

Consider N C M an inclusion of R-modules. Let f : M — Mg be the
canonical R-module homomorphism. Denote by f(N)Rg the Rg-submodule of
Mg generated by f(N). We set Satg pr(N) := f~1(f(N)Rs) and (N :p1 8) ==
{m € M; sm € N}.

Proposition 4.8. Let N be an R-submodule of an R-module M. Satg ar(N)
is S-finite if and only if N is S-finite and Sats p(N) = (N :pr s) for some
seS.

Proof. (=) Set K = Satg p(N). Since K is S-finite, there exist an s € S and
a finitely generated R-module J such that sK C J C K. Thus, sN C sK C J.
We can write J = Rxy + Rxe + -+ + Rz, for some z1,29,...,2, € J. For
each z;, there exists a t; € S such that t;x; € N. We set t = H?:l t;. Then,
tsN C tsK CtJ C N. Then, N is S-finite. On the other hand, since sK C
tJ CNCK, KC(N:ps). Conversely, let € (N :p7 s). Then, sz € N, so
r € K, as desired.

(<) Since N is S-finite, there exist a ¢ € S and a finitely generated R-
module J such that tN C J C N. On the other hand, since K = (N : s) for
some s € S, sK C N. Consequently, tsK CtN C J C N C K. Therefore, K
is S-finite. O

The following result is proved similarly to the proof of Proposition 4.8. How-
ever, to guarantee the preservation of finitely presented modules when multi-
plying by elements of S, we assume that S does not contain any zero-divisor
of R.

Proposition 4.9. Assume that every element of S is regular. Let N be an
R-submodule of an R-module M. Then Sats a(N) is c-S-finitely presented if
and only if N is c-S-finitely presented and Satgp(N) = (N :pr s) for some
seSs.

Corollary 4.10. Assume that every element of S is reqular. The following
assertions are equivalent:

(1) For every finitely generated ideal I of R, Satg(I) is c-S-finitely pre-
sented.

(2) R is c-S-coherent and, for every finitely generated ideal I of R, Satgs(I)
= (I :s) for somes€S.
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