References
- H. Ahmed and H. Sana, S-Noetherian rings of the forms A[X] and A[[X]], Comm. Algebra 43 (2015), no. 9, 3848-3856. https://doi.org/10.1080/00927872.2014.924127
- H. Ahmed and H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44 (2016), no. 5, 1941-1951.
- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
- D. D. Anderson, D. J. Kwak, and M. Zafrullah, Agreeable domains, Comm. Algebra 23 (1995), no. 13, 4861-4883. https://doi.org/10.1080/00927879508825505
- S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
- D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), no. 10, 3997-4011. https://doi.org/10.1080/00927879408825061
- S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer-Verlag, Berlin, 1989.
- E. Hamann, E. Houston, and J. L. Johnson, Properties of uppers to zero in R[X], Com. Alg. 23 (1995), 4861-4883. https://doi.org/10.1080/00927879508825505
- I. Kaplansky, Projective modules, Ann. of Math (2) 68 (1958), 372-377. https://doi.org/10.2307/1970252
- H. Kim, M. O. Kim, and J. W. Lim, On S-strong Mori domains, J. Algebra 416 (2014), 314-332.
- J. W. Lim and D. Y. Oh, S-Noetherian properties on amalgamated algebras along an ideal, J. Pure Appl. Algebra 218 (2014), no. 6, 1075-1080. https://doi.org/10.1016/j.jpaa.2013.11.003
- J. W. Lim and D. Y. Oh, S-Noetherian properties of composite ring extensions, Comm. Algebra 43 (2015), no. 7, 2820-2829. https://doi.org/10.1080/00927872.2014.904329
- Z. Liu, On S-Noetherian rings, Arch. Math. (Brno) 43 (2007), no. 1, 55-60.
- W. Wm. McGovern, G. Puninski, and P. Rothmaler, When every projective module is a direct sum of finitely generated modules, J. Algebra 315 (2007), no. 1, 454-481. https://doi.org/10.1016/j.jalgebra.2007.01.043