DOI QR코드

DOI QR Code

SOME MORE COUNTEREXAMPLES FOR BOMBIERI'S CONJECTURE ON UNIVALENT FUNCTIONS

  • Received : 2017.12.05
  • Accepted : 2018.03.27
  • Published : 2018.11.01

Abstract

We disprove a conjecture of Bombieri regarding univalent functions in the unit disk in some previously unknown cases. The key step in the argument is showing that the global minimum of the real function (n sin x - sin(nx))/(m sin x - sin(mx)) is attained at x = 0 for integers m > $n{\geq}2$ when m is odd and n is even, m is sufficiently big and $0.5{\leq}n/m{\leq}0.8194$.

Keywords

References

  1. E. Bombieri, On the local maximum property of the Koebe function, Invent. Math. 4 (1967), 26-67.
  2. D. Bshouty and W. Hengartner, A variation of the Koebe mapping in a dense subset of S, Canad. J. Math. 39 (1987), no. 1, 54-73. https://doi.org/10.4153/CJM-1987-004-8
  3. I. Efraimidis, On the failure of Bombieri's conjecture for univalent functions, published online in Comput. Methods Funct. Theory, doi: 10.1007/s40315-017-0222-2 (arXiv: 1612.07242v5).
  4. Y.-J. Leung, On the Bombieri numbers for the class S, J. Anal. 24 (2016), no. 2, 229-250.
  5. D. Prokhorov and O. Roth, On the local extremum property of the Koebe function, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 2, 301-312. https://doi.org/10.1017/S030500410300714X