References
-
F. Brito and M. L. Leite, Uniqueness and globality of the Liouville formula for entire solutions of
$\frac{{\partial}^2log{\lambda}}{{\partial}z{\partial}{\bar{z}}}+{\frac{\lambda}{2}}=0$ , Arch. Math. (Basel) 80 (2003), no. 5, 501-506. https://doi.org/10.1007/s00013-003-0481-1 - F. Brito, M. L. Leite, and V. de Souza Neto, Liouville's formula under the viewpoint of minimal surfaces, Commun. Pure Appl. Anal. 3 (2004), no. 1, 41-51. https://doi.org/10.3934/cpaa.2004.3.41
- J. Cho and Y. Ogata, Deformation of minimal surfaces with planar curvature lines, J. Geom. 108 (2017), no. 2, 463-479.
-
Y. Fang, Lectures on minimal surfaces in
${\mathbb{R}}^3$ , Proceedings of the Centre for Mathematics and its Applications, Australian National University, 35, Australian National University, Centre for Mathematics and its Applications, Canberra, 1996. - A. Gray, Modern Geometry of Curves and Surfaces with Mathematica, 3rd ed. Chapman and Hall/CRC Press, Boca Raton, FL, 2006.
- M. L. Leite, Surfaces with planar lines of curvature and orthogonal systems of cycles, J. Math. Anal. Appl. 421 (2015), no. 2, 1254-1273. https://doi.org/10.1016/j.jmaa.2014.07.047
- J. C. C. Nitsche, Lectures on Minimal Surfaces. Vol. 1, translated from the German by Jerry M. Feinberg, Cambridge University Press, Cambridge, 1989.
- C. M. C. Riveros and A. M. V. Corro, A characterization of the catenoid and helicoid, Internat. J. Math. 24 (2013), no. 6, 1350045, 11 pp.
- C. M. C. Riveros and A. M. V. Corro, Geodesics in minimal surfaces, Math. Notes 101 (2017), no. 3-4, 497-514.
- J. J. Stoker, Differential Geometry, Pure and Applied Mathematics, Vol. XX, Interscience Publishers John Wiley & Sons, New York, 1969.