Acknowledgement
Supported by : NSF of China, Fok Ying-Tong Education Foundation
References
- B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151-171. https://doi.org/10.1007/BF01191340
- E. Cabezas-Rivas and C. Sinestrari, Volume-preserving flow by powers of the mth mean curvature, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 441-469. https://doi.org/10.1007/s00526-009-0294-6
-
X. Cao, Eigenvalues of (
$-{\Delta}+{\frac{R}{2}}$ ) on manifolds with nonnegative curvature operator, Math. Ann. 337 (2007), no. 2, 435-441. https://doi.org/10.1007/s00208-006-0043-5 - X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4075-4078. https://doi.org/10.1090/S0002-9939-08-09533-6
- X. Cao, S. Hou, and J. Ling, Estimate and monotonicity of the first eigenvalue under the Ricci flow, Math. Ann. 354 (2012), no. 2, 451-463. https://doi.org/10.1007/s00208-011-0740-6
- P. Freitas, J. Mao, and I. Salavessa, Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 701-724. https://doi.org/10.1007/s00526-013-0692-7
- R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.
- G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237-266.
- G. Li and I. Salavessa, Forced convex mean curvature flow in Euclidean spaces, Manuscripta Math. 126 (2008), no. 3, 333-351. https://doi.org/10.1007/s00229-008-0181-z
- G. H. Li, J. Mao, and C. X. Wu, Convex mean curvature flow with a forcing term in direction of the position vector, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 2, 313-332.
- J.-F. Li, Eigenvalues and energy functionals with monotonicity formulae under Ricci flow, Math. Ann. 338 (2007), no. 4, 927-946. https://doi.org/10.1007/s00208-007-0098-y
- L. Ma, Eigenvalue monotonicity for the Ricci-Hamilton flow, Ann. Global Anal. Geom. 29 (2006), no. 3, 287-292. https://doi.org/10.1007/s10455-006-9018-8
- J. Mao, Forced hyperbolic mean curvature flow, Kodai Math. J. 35 (2012), no. 3, 500-522. https://doi.org/10.2996/kmj/1352985451
-
J. Mao, Deforming two-dimensional graphs in
$R^4$ by forced mean curvature flow, Kodai Math. J. 35 (2012), no. 3, 523-531. https://doi.org/10.2996/kmj/1352985452 - J. Mao, A class of rotationally symmetric quantum layers of dimension 4, J. Math. Anal. Appl. 397 (2013), no. 2, 791-799. https://doi.org/10.1016/j.jmaa.2012.08.012
- J. Mao, Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel, J. Math. Pures Appl. (9) 101 (2014), no. 3, 372-393. https://doi.org/10.1016/j.matpur.2013.06.006
- J. Mao, Eigenvalue estimation and some results on finite topological type, Ph.D. thesis, IST-UTL, 2013.
- J. Mao, G. Li, and C. Wu, Entire graphs under a general flow, Demonstratio Math. 42 (2009), no. 3, 631-640. https://doi.org/10.1515/dema-2009-0318
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
- J. Roth, A remark on almost umbilical hypersurfaces, Arch. Math. (Brno) 49 (2013), no. 1, 1-7. https://doi.org/10.1007/BF01200221
- K. Shiohama and H. W. Xu, Rigidity and sphere theorems for submanifolds, Kyushu J. Math. 48 (1994), no. 2, 291-306. https://doi.org/10.2206/kyushujm.48.291
- K. Shiohama and H. W. Xu, Rigidity and sphere theorems for submanifolds. II, Kyushu J. Math. 54 (2000), no. 1, 103-109. https://doi.org/10.2206/kyushujm.54.103
- L. Zhao, The first eigenvalue of p-Laplace operator under powers of the mth mean curvature flow, Results Math. 63 (2013), no. 3-4, 937-948.