References
- Spiegelman, B.M., Flier, J.S.: Obesity and the regulation of energy balance. Cell., 104, 531-543 (2001). https://doi.org/10.1016/S0092-8674(01)00240-9
- Ballinger, A., Peikin, S.R.: Orlistat: its current status as an anti-obesity drug. Eur. J. Pharmacol., 440, 109-117 (2002). https://doi.org/10.1016/S0014-2999(02)01422-X
- Rodgers, R.J., Tschop, M.H., Wilding, J.P.: Anti-obesity drugs: past, present and future. Dis. Model. Mech., 5, 621-626 (2012). https://doi.org/10.1242/dmm.009621
- Cheung, B.M.Y., Cheung, T.T., Samaranayake, N.R.: Safe of antiobesity drugs. Ther. Adv. Drug. Saf., 4, 171-181 (2013). https://doi.org/10.1177/2042098613489721
- Lee, T.K., Lee, W.S., Hwang, J.T., Kwon, D.Y., Surh, Y.J., Park, O.J.: Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J. Agric. Food Chem., 57, 305-310 (2009). https://doi.org/10.1021/jf802737z
- Jang, M.H., Piao, W.L., Kim, J.M., Kwon, S.W., Park, J.H.: Inhibition of cholinesterase and amyloid-beta aggregation by resveratrol oligomers from Vitis amurensis. Phytother Res., 22, 544-549 (2008). https://doi.org/10.1002/ptr.2406
- Rosen, E.D., Spiegelman, B.M.: Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol., 16, 145-171 (2000). https://doi.org/10.1146/annurev.cellbio.16.1.145
- Attie, A.D., Scherer, P.E.: Adipocyte metabolism and obesity. J. Lipid Res., 50, 395-399 (2009). https://doi.org/10.1194/jlr.R800057-JLR200
- Kim, H.J., Kang, C.H., Kim, S.K.: Anti-adipogenic effect of Undaria pinnatifida extracts by ethanol in 3T3-L1 adipocytes. J. Life Sci., 22, 1052-1056 (2012). https://doi.org/10.5352/JLS.2012.22.8.1052
- Ntambi, J.M., Kim, Y.C.: Adipocyte differentiation and gene expression. J. Nutr., 130, 3122-3126 (2000). https://doi.org/10.1093/jn/130.12.3122S
-
Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., Spiegelman, B.M.: Cross-regulation of C/EBP
${\alpha}$ and PPAR${\gamma}$ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell., 3, 151-158 (1999). https://doi.org/10.1016/S1097-2765(00)80306-8 - Park, H.Y., Lim, B.K.: Manufacturing optimization of wet noodle added with leaf powder of freeze-dried Cirsium setidens Nakai. Food Eng. Prog., 18, 130-139 (2014). https://doi.org/10.13050/foodengprog.2014.18.2.130
- Yoo, Y.M., Nam, J.H., Kim, M.Y., Choi, J., Park, H.J.: Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol. Pharm. Bull., 31, 760-764 (2008). https://doi.org/10.1248/bpb.31.760
- Rauen, H.M., Schriewer, H.: The antihepatotoxic effect of silymarin on liver damage in rats induced by carbon tetrachloride, d-galactosamine and allyl alcohol. Arzneimittelforschung., 21, 1194-1201 (1971).
-
Lee, S.H., Heo, S.I., Li, L., Lee, M.J., Wang, M.H.: Antioxidant and hepatoprotective activities of Cirsium setidens Nakai against
$CCl_4$ -induced liver damage. Am. J. Chin. Med., 36, 107-114 (2008). https://doi.org/10.1142/S0192415X0800562X - Ishida, H., Umino, T., Tsuji, K., Kosuge, T.: Studies on antihemmorrhagic substances in herbs classified as hemostatics in Chinese medicine. VII. On the antihemorrhagic principle in Cirsium japonicum DC. Chem Pharm Bull(Tokyo)., 35, 861-864 (1987). https://doi.org/10.1248/cpb.35.861
- Kang, I.J., Ham, S.S., Chung, C.K., Lee, S.Y., Oh, D.H., Choi, K.P., Do, J.J.: Development of fermented soysauce using Cirsium setidens Nakai and comfrey. J. Korean Soc. Food Sci. Nutr., 26, 1152-1158 (1997).
- Lee, Y.J., Lee, J.H., Kim, Y.H., Kim, J.H., Yu, S.Y., Kim, D.B., Lee, J.S., Cho, M.L., Cho, J.H., Kim, B.K., Lee, B.Y., Lee, O.H.: Assessment of the pectolinarin content and the radical scavenging-linked antiobesity activity of Cirsium setidens Nakai extracts. Food Sci. Biotechnol., 24, 2235- 2243 (2015). https://doi.org/10.1007/s10068-015-0298-2
- Cho, B.Y., Park, M.R., Lee, J.H., Ra, M.J., Han, K.C., Kang, I.J., Lee, O.H.: Standardized Cirsium setidens Nakai ethanolic extract suppresses adipogenesis and regulates lipid metabolisms in 3T3-L1 adipocytes and C57BL/6J mice fed high-fat diets. J Med Food., 20, 763-776 (2017). https://doi.org/10.1089/jmf.2017.3965
- Kim, D.J., Jung, J.H., Kim, S.G., Lee, H.K., Lee, S.K., Hong, H.D., Lee, B.Y., Lee, O.H.: Antioxidants and anti-obesity activities of hot water and ethanolic extracts from Cheonnyuncho (Opuntia humifusa). Kor. J. Food Preserv., 18, 366-373 (2011). https://doi.org/10.11002/kjfp.2011.18.3.366
- Sampson, N., Koziel, R., Zenzmaier, C., Bubendorf, L., Plas, E., Jansen-Durr P., Berger, P.: ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol. Endocrinol., 25, 503-515 (2011). https://doi.org/10.1210/me.2010-0340
-
Basuroy, S., Tcheranova, D., Bhattacharya, S., Leffler, C.W., Parfenova, H.: Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-
${\alpha}$ -induced apoptosis. Am. J. Physiol. Cell Physiol., 300, 256-265 (2011). https://doi.org/10.1152/ajpcell.00272.2010 - Li, Y., Kang, Z., Li, S., Kong, T., Liu, X., Sun, C.: Ursolic acid stimulates lipolysis in primary-cultured rat adipocytes. Mol Nutr Food Res., 54, 1609-1617 (2010). https://doi.org/10.1002/mnfr.200900564
- Assifi, M.M., Suchankova, G., Constant, S., Prentki, M., Saha, A.K., Ruderman, N.B.: AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am. J. Physiol. Endocrinol Metab., 289, E794-800 (2005). https://doi.org/10.1152/ajpendo.00144.2005
- Wang, Y., Lam, K.S., Yau, M.H., Xu, A.: Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J., 409, 623-633 (2008). https://doi.org/10.1042/BJ20071492
- Xu, A., Wang, Y., Keshaw, H., Xu, L.Y., Lam, K.S., Cooper, G.J.: The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. invest., 112, 91-100 (2003). https://doi.org/10.1172/JCI200317797
- Hardie, D.G.: AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 8, 774-785, (2007). https://doi.org/10.1038/nrm2249
- Woods, A., Azzout-Marniche, D., Foretz, M., Stein, S.C., Lemarchand, P., Ferŕe, P., Foufelle, F., Carling, D.: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol., 20, 6704-6711 (2000). https://doi.org/10.1128/MCB.20.18.6704-6711.2000
- Foretz, M., Carling, D., Guichard, C., Ferŕe, P., Foufelle, F.: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem., 273, 14767-14771, (1998). https://doi.org/10.1074/jbc.273.24.14767