DOI QR코드

DOI QR Code

Anti-obesity Activities of Cirsium setidens Nakai Ethanolic Extract

고려엉겅퀴 주정 추출물을 함유하는 임상시험제품의 항비만 활성 평가

  • Cho, Bong-Yeon (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Sun-Il (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Choi, Seung-Hyun (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Sim, Wan-Sup (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Xionggao, Han (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Ra, Moon-Jin (Hongcheon Institute of Medicinal Herb) ;
  • Kim, Sun-Young (Hongcheon Institute of Medicinal Herb) ;
  • Kang, Il-Jun (Department of Food Science and Nutrition, Hallym University) ;
  • Han, Kyoung-Chan (HATTI Co., Ltd.) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • Received : 2018.05.14
  • Accepted : 2018.06.25
  • Published : 2018.10.30

Abstract

The purpose of this study was to evaluate anti-obesity activity of Cirsium setidens Nakai test material (CNTM) in 3T3-L1 adipocytes and obese C57BL/6J mice fed with a high-fat diet using various obesity-related in vitro experiments. During adipocyte differentiation, CNTM significantly inhibited lipid accumulation and ROS production compared to controls. To evaluate whether CNTM could exert glycerol release effects on mature 3T3-L1 adipocytes, we treated cells with various concentrations of CNTM for 1 h. Treatment of mature adipocytes with $160-320{\mu}g/mL$ of CNTM increased the release of glycerol, but not in a significant dose-dependent manner. Anti-adipogenic and anti-lipogenic effects of CNTM seemed to be mediated by the inhibition of $PPAR{\gamma}$ and $C/EBP{\alpha}$. Moreover, CNTM stimulated fatty acid oxidation in an AMPK-dependent manner. CNTM-treated groups of C57BL/6J mice showed reduced body weights and adipose tissue weight with improving serum lipid profiles and adiponectin protein expression in obese C57BL/6J mice fed with a high-fat diet. These results suggest that CNTM might have anti-obesity effect on adipogenesis and lipid metabolism in vitro and in vivo. This presents the possibility of developing a treatment for obesity using nontoxic natural resources.

본 연구는 고려엉겅퀴 주정추출물을 가지고 제작된 임상시험용제품(CNTM)이 3T3-L1 지방세포 및 고지방식이로 유도된 비만 쥐에 미치는 항비만 효능 관찰을 통하여 체지방 개선 기능성식품을 개발하기위하여 인체적용시험 시료를 제작한 후, 인체적용시험전에 그 효력이 유지됨을 확인하기위해 수행되었다. 본 연구에 사용된 시료 CNTM은 $80{\sim}320{\mu}g/mL$ 농도에서 세포독성이 관찰되지 않았으며, 지방 축적억제 효능 및 지방세포 분화, 지질대사 관련 유전인자들을 유의적으로 변화시키는 것으로 확인되었다. 또한 동물실험에서 CNTM 처리에 의하여 체중의 감소를 확인하였으며 혈중지질 성분 가운데 HDL-C/TC의 비율은 유의적으로 증가하며 LDL-cholesterol (LDL-C)과 non-esterified fatty acid (NEFA)의 비율은 유의적으로 감소하여 혈중 유리지방산 농도를 감소시키며 혈중 콜레스테롤 상승을 억제시키고 혈당을 감소시키는 효과가 있는 것으로 평가되었다. 따라서 고려엉겅퀴 주정추출물이 함유된 인체적용시험시료(CNTM)는 체지방 개선에 우수한 효과가 있는 것으로 확인되었다.

Keywords

References

  1. Spiegelman, B.M., Flier, J.S.: Obesity and the regulation of energy balance. Cell., 104, 531-543 (2001). https://doi.org/10.1016/S0092-8674(01)00240-9
  2. Ballinger, A., Peikin, S.R.: Orlistat: its current status as an anti-obesity drug. Eur. J. Pharmacol., 440, 109-117 (2002). https://doi.org/10.1016/S0014-2999(02)01422-X
  3. Rodgers, R.J., Tschop, M.H., Wilding, J.P.: Anti-obesity drugs: past, present and future. Dis. Model. Mech., 5, 621-626 (2012). https://doi.org/10.1242/dmm.009621
  4. Cheung, B.M.Y., Cheung, T.T., Samaranayake, N.R.: Safe of antiobesity drugs. Ther. Adv. Drug. Saf., 4, 171-181 (2013). https://doi.org/10.1177/2042098613489721
  5. Lee, T.K., Lee, W.S., Hwang, J.T., Kwon, D.Y., Surh, Y.J., Park, O.J.: Curcumin exerts antidifferentiation effect through AMPKalpha-PPAR-gamma in 3T3-L1 adipocytes and antiproliferatory effect through AMPKalpha-COX-2 in cancer cells. J. Agric. Food Chem., 57, 305-310 (2009). https://doi.org/10.1021/jf802737z
  6. Jang, M.H., Piao, W.L., Kim, J.M., Kwon, S.W., Park, J.H.: Inhibition of cholinesterase and amyloid-beta aggregation by resveratrol oligomers from Vitis amurensis. Phytother Res., 22, 544-549 (2008). https://doi.org/10.1002/ptr.2406
  7. Rosen, E.D., Spiegelman, B.M.: Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol., 16, 145-171 (2000). https://doi.org/10.1146/annurev.cellbio.16.1.145
  8. Attie, A.D., Scherer, P.E.: Adipocyte metabolism and obesity. J. Lipid Res., 50, 395-399 (2009). https://doi.org/10.1194/jlr.R800057-JLR200
  9. Kim, H.J., Kang, C.H., Kim, S.K.: Anti-adipogenic effect of Undaria pinnatifida extracts by ethanol in 3T3-L1 adipocytes. J. Life Sci., 22, 1052-1056 (2012). https://doi.org/10.5352/JLS.2012.22.8.1052
  10. Ntambi, J.M., Kim, Y.C.: Adipocyte differentiation and gene expression. J. Nutr., 130, 3122-3126 (2000). https://doi.org/10.1093/jn/130.12.3122S
  11. Wu, Z., Rosen, E.D., Brun, R., Hauser, S., Adelmant, G., Troy, A.E., McKeon, C., Darlington, G.J., Spiegelman, B.M.: Cross-regulation of C/EBP${\alpha}$ and PPAR ${\gamma}$ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell., 3, 151-158 (1999). https://doi.org/10.1016/S1097-2765(00)80306-8
  12. Park, H.Y., Lim, B.K.: Manufacturing optimization of wet noodle added with leaf powder of freeze-dried Cirsium setidens Nakai. Food Eng. Prog., 18, 130-139 (2014). https://doi.org/10.13050/foodengprog.2014.18.2.130
  13. Yoo, Y.M., Nam, J.H., Kim, M.Y., Choi, J., Park, H.J.: Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol. Pharm. Bull., 31, 760-764 (2008). https://doi.org/10.1248/bpb.31.760
  14. Rauen, H.M., Schriewer, H.: The antihepatotoxic effect of silymarin on liver damage in rats induced by carbon tetrachloride, d-galactosamine and allyl alcohol. Arzneimittelforschung., 21, 1194-1201 (1971).
  15. Lee, S.H., Heo, S.I., Li, L., Lee, M.J., Wang, M.H.: Antioxidant and hepatoprotective activities of Cirsium setidens Nakai against $CCl_4$-induced liver damage. Am. J. Chin. Med., 36, 107-114 (2008). https://doi.org/10.1142/S0192415X0800562X
  16. Ishida, H., Umino, T., Tsuji, K., Kosuge, T.: Studies on antihemmorrhagic substances in herbs classified as hemostatics in Chinese medicine. VII. On the antihemorrhagic principle in Cirsium japonicum DC. Chem Pharm Bull(Tokyo)., 35, 861-864 (1987). https://doi.org/10.1248/cpb.35.861
  17. Kang, I.J., Ham, S.S., Chung, C.K., Lee, S.Y., Oh, D.H., Choi, K.P., Do, J.J.: Development of fermented soysauce using Cirsium setidens Nakai and comfrey. J. Korean Soc. Food Sci. Nutr., 26, 1152-1158 (1997).
  18. Lee, Y.J., Lee, J.H., Kim, Y.H., Kim, J.H., Yu, S.Y., Kim, D.B., Lee, J.S., Cho, M.L., Cho, J.H., Kim, B.K., Lee, B.Y., Lee, O.H.: Assessment of the pectolinarin content and the radical scavenging-linked antiobesity activity of Cirsium setidens Nakai extracts. Food Sci. Biotechnol., 24, 2235- 2243 (2015). https://doi.org/10.1007/s10068-015-0298-2
  19. Cho, B.Y., Park, M.R., Lee, J.H., Ra, M.J., Han, K.C., Kang, I.J., Lee, O.H.: Standardized Cirsium setidens Nakai ethanolic extract suppresses adipogenesis and regulates lipid metabolisms in 3T3-L1 adipocytes and C57BL/6J mice fed high-fat diets. J Med Food., 20, 763-776 (2017). https://doi.org/10.1089/jmf.2017.3965
  20. Kim, D.J., Jung, J.H., Kim, S.G., Lee, H.K., Lee, S.K., Hong, H.D., Lee, B.Y., Lee, O.H.: Antioxidants and anti-obesity activities of hot water and ethanolic extracts from Cheonnyuncho (Opuntia humifusa). Kor. J. Food Preserv., 18, 366-373 (2011). https://doi.org/10.11002/kjfp.2011.18.3.366
  21. Sampson, N., Koziel, R., Zenzmaier, C., Bubendorf, L., Plas, E., Jansen-Durr P., Berger, P.: ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol. Endocrinol., 25, 503-515 (2011). https://doi.org/10.1210/me.2010-0340
  22. Basuroy, S., Tcheranova, D., Bhattacharya, S., Leffler, C.W., Parfenova, H.: Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-${\alpha}$-induced apoptosis. Am. J. Physiol. Cell Physiol., 300, 256-265 (2011). https://doi.org/10.1152/ajpcell.00272.2010
  23. Li, Y., Kang, Z., Li, S., Kong, T., Liu, X., Sun, C.: Ursolic acid stimulates lipolysis in primary-cultured rat adipocytes. Mol Nutr Food Res., 54, 1609-1617 (2010). https://doi.org/10.1002/mnfr.200900564
  24. Assifi, M.M., Suchankova, G., Constant, S., Prentki, M., Saha, A.K., Ruderman, N.B.: AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am. J. Physiol. Endocrinol Metab., 289, E794-800 (2005). https://doi.org/10.1152/ajpendo.00144.2005
  25. Wang, Y., Lam, K.S., Yau, M.H., Xu, A.: Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem J., 409, 623-633 (2008). https://doi.org/10.1042/BJ20071492
  26. Xu, A., Wang, Y., Keshaw, H., Xu, L.Y., Lam, K.S., Cooper, G.J.: The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. invest., 112, 91-100 (2003). https://doi.org/10.1172/JCI200317797
  27. Hardie, D.G.: AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 8, 774-785, (2007). https://doi.org/10.1038/nrm2249
  28. Woods, A., Azzout-Marniche, D., Foretz, M., Stein, S.C., Lemarchand, P., Ferŕe, P., Foufelle, F., Carling, D.: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol., 20, 6704-6711 (2000). https://doi.org/10.1128/MCB.20.18.6704-6711.2000
  29. Foretz, M., Carling, D., Guichard, C., Ferŕe, P., Foufelle, F.: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem., 273, 14767-14771, (1998). https://doi.org/10.1074/jbc.273.24.14767