DOI QR코드

DOI QR Code

A Development of P-EH(Practical Energy Harvester) Platform for Non-Linear Energy Harvesting Environment in Wearable Device

비연속적 에너지 발전 환경을 고려한 웨어러블 기반 P-EH 플랫폼 개발

  • 박현문 (전자부품연구원, SoC 플랫폼 연구센터) ;
  • 김병수 (전자부품연구원, SoC 플랫폼 연구센터) ;
  • 김동순 (전자부품연구원, SoC 플랫폼연구센터)
  • Received : 2018.07.10
  • Accepted : 2018.10.15
  • Published : 2018.10.31

Abstract

Fast progress in miniaturization and reducing power consumption of semiconductors for wearable devices makes it possible to develop extremely small wearable systems for various application services. This results recent wearable applications to be powered from extremely low-power energy harvesters based on solar, piezo, and TENG sources. In most cases, the harvesters generate power in non-linear manner. Therefore, we implemented and experimented the device platforms to utilize natural frequency of around 3Hz. We also designed two-stage power storages and high efficiency conversion platform to consider such non-linear power harvesting sources. The experiment showed power generation of about 4.67mW/min from these non-linear sources with provision of stable energy storages.

웨어러블 기기에서 반도체의 소형화 및 저전력 기술이 빠르게 진행됨에 따라 다양한 초소형 형태의 응용서비스를 제공할 수 있게 되었다. 최근에는 태양열, 피에조, 마찰 등 다양한 에너지 하베스터를 이용해 저전력 반도체는 매우 낮은 전원으로도 동작할 수 있게 되었다. 웨어러블 상황에서의 대부분에 에너지 하베스팅은 비연속적(non-linear)으로 발전된다. 이에 따라 본 연구에서는, 3Hz의 낮은 주파수기반 디바이스 플랫폼을 제작하여 실험적으로 평가하였다. 본 연구는 비연속적 발전 환경을 고려해, 2단계의 저장환경과 사용된 에너지 발전소자의 맞춘 에너지 고효율 변환 플랫폼 설계하였다. 또한, 비연속적 에너지 수집 환경에서 안정적인 에너지를 저장 유지를 통해 약 4.67mW/min 발전하였다.

Keywords

References

  1. W. Wu, S. Bai, M. Yuan, Y. Qin, Z. Wang, and T. Jing, "Lead zirconate titanate nanowire textile nanogenerator for wearable energyharvesting and self-powered devices," American chemical society nano, vol. 6, no. 7, June 2012, pp. 6231-6235.
  2. J. Bahk, H. Fang, K. Yazawa, and A. Shakouri, "Flexible thermoelectric materials and device optimization for wearable energy harvesting," Journal of Materials Chemistry C, vol. 3, no. 40, July 2015, pp. 10362-10374. https://doi.org/10.1039/C5TC01644D
  3. T. Zhou, C. Zhang, C. Han, F. Fan, W. Tang, and Z. Wang, "Woven structured triboelectric nanogenerator for wearable devices," American chemical society applied materials & interfaces, vol. 6 no. 16, July 2014, pp. 14695-14701. https://doi.org/10.1021/am504110u
  4. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, and Z. Wang, "Micro-cable structured textile for simultaneously harvesting solar and mechanical energy," Nature Energy, vol. 1, no. 10, Sep. 2016, pp. 16138. https://doi.org/10.1038/nenergy.2016.138
  5. Y. Park, J. Park, H. Kim, H. Ryu, S. Kim, Y. Pu, and K. Lee, "A design of a 92.4% efficiency triple mode control DC-DC buck converter with low power retention mode and adaptive zero current detector for IoT/Wearable applications," IEEE Transactions on Power Electronics, vol. 32, no. 9, Nov. 2017, pp. 6946-6960. https://doi.org/10.1109/TPEL.2016.2623812
  6. P. Chen, C. Wu, and K. Lin, "A 50 nW-to-10 mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting," IEEE Journal of Solid-State Circuits, vol. 51, no. 2, Jan. 2016, pp. 523-532. https://doi.org/10.1109/JSSC.2015.2506685
  7. H. Park, H. Kim, and D. Sun, "An multiple energy harvester with an improved Energy Harvesting platform for Self-powered Wearable Device," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, Feb. 2018, pp. 155-161.
  8. H. Park, H. Kim, and D. Sun, "A Development of Energy Storage Monitoring System Architecture for Triboelectric Nano-generator in the Implant Environment," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, Apr. 2018, pp. 473-480. https://doi.org/10.13067/JKIECS.2018.13.2.473
  9. H. Ryu and S. Kim, "Recent development of the triboelectric properties of the polymer: A review," Advanced Materials Letters, vol. 9, no. 7, 2018, pp. 462-470. https://doi.org/10.5185/amlett.2018.1869
  10. Y. Kuang, T. Ruan, Z. Chew, and M. Zhu, "Energy harvesting during human walking to power a wireless sensor node," Sensors and Actuators A: Physical, vol. 254, no 1, Feb. 2017, pp. 69-77. https://doi.org/10.1016/j.sna.2016.11.035
  11. C. Glaser, bq25504 Ultra Low- Power Boost Converter With Battery Management for Energy Harvester Applications. USA, Texas Instruments : Jun. 2017. page. 1-34.
  12. J. Estrada-Lopez, A. Abuellil, Z. Zeng, and E. Sanchez-Sinencio, "Multiple Input Energy Har-vesting Systems for Autonomous IoT End-Nodes," Journal of Low Power Electronics and Applications, vol. 8, no. 1, Mar. 2018. pp. 1-14. https://doi.org/10.3390/jlpea8010001