DOI QR코드

DOI QR Code

0.18㎛ CMOS 공정을 이용한 MEMS 마이크로폰용 이중 채널 음성 빔포밍 ASIC 설계

An ASIC implementation of a Dual Channel Acoustic Beamforming for MEMS microphone in 0.18㎛ CMOS technology

  • 투고 : 2018.07.02
  • 심사 : 2018.10.15
  • 발행 : 2018.10.31

초록

음성 인식 제어 시스템은 사용자의 음성을 인식하여 주변 장치를 제어하는 시스템이다. 최근 음성 인식 제어 시스템은 스마트기기 뿐만 아니라, IoT(: Internet of Things), 로봇, 차량에 이르기까지 다양한 환경에 적용되고 있다. 이러한 음성 인식 제어 시스템은 사용자의 음성 외에 주변 잡음에 의한 인식률 저하가 발생한다. 이에 본 논문은 사용자의 음성 외에 주변 잡음을 제거하기 위하여 MEMS(: Microelectromechanical Systems) 마이크로폰용 이중 채널 음성 빔포밍 하드웨어 구조를 제안하였으며, 제안한 하드웨어 구조를 TowerJazz $0.18{\mu}m$ CMOS(: Complementary Metal-Oxide Semiconductor) 공정을 이용하여 ASIC(: Application-Specific Integrated Circuit)을 설계하였다. 설계한 이중 채널 음성 빔포밍 ASIC은 $48mm^2$의 Die size를 가지며, 사용자의 음성에 대한 지향성 특성을 측정한 결과 4.233㏈의 특성을 보였다.

A voice recognition control system is a system for controlling a peripheral device by recognizing a voice. Recently, a voice recognition control system have been applied not only to smart devices but also to various environments ranging from IoT(: Internet of Things), robots, and vehicles. In such a voice recognition control system, the recognition rate is lowered due to the ambient noise in addition to the voice of the user. In this paper, we propose a dual channel acoustic beamforming hardware architecture for MEMS(: Microelectromechanical Systems) microphones to eliminate ambient noise in addition to user's voice. And the proposed hardware architecture is designed as ASIC(: Application-Specific Integrated Circuit) using TowerJazz $0.18{\mu}m$ CMOS(: Complementary Metal-Oxide Semiconductor) technology. The designed dual channel acoustic beamforming ASIC has a die size of $48mm^2$, and the directivity index of the user's voice were measured to be 4.233㏈.

키워드

참고문헌

  1. M. Brandstein and D. Ward, Microphone arrays: signal processing techniques and applications. Berlin, Heidelberg: Springer Science & Business Media, 2013.
  2. P. C. Loizou, Speech enhancement: theory and practice. New York: CRC press, 2013.
  3. J. Benesty, C. Jingdong, and H. Yiteng, Microphone array signal processing, Berlin, Heidelberg: Springer Science & Business Media, 2008.
  4. O. Frost, "An algorithm for linearly constrained adaptive array processing," Proc. of the IEEE, vol. 60, no. 8, Aug. 1972, pp. 926-935. https://doi.org/10.1109/PROC.1972.8817
  5. V. Yoganathan and T. Joir, "Multi-microphone adaptive neural switched Griffiths-Jim beamformer for noise reduction," In Signal Processing (ICSP), 2010 IEEE 10th Int. Conf. on. IEEE, Beijing, China, Oct. 2010, pp. 299-302.
  6. C. Lee and D. Kim, "Adaptive Noise Reduction of Speech Using Wavelet Transform," J. of the Korea Institute of Electronic Communication Sciences, vol. 4, no. 3, Sept. 2009, pp. 190-196.
  7. J. Choi, "Noise Reduction Algorithm in Speech by Wiener Filter," J. of the Korea Institute of Electronic Communication Science, vol. 8, no. 9, Sept. 2013. pp. 1293-1298. https://doi.org/10.13067/JKIECS.2013.8.9.1293
  8. O. Hoshuyama, A. Sugiyama, and A. Hirano, "A Robust Adaptive Beamformer with a Blocking Matrix Using Coefficient-constrained Adaptive Filters," IEICE Trans. Fundamentals, vol. E82-A, no. 4, Apr. 1999, pp. 640-647.
  9. O. Hoshuyama, A. Sugiyama, and A. Hirano, "A robust adaptive beamformer for microphone arrays with a blocking matrix using constrained adaptive filters," IEEE Trans. Signal Processing, vol. 47, no. 10, Oct. 1999, pp. 2677-2684. https://doi.org/10.1109/78.790650
  10. S. Gannot, D. Burshtein, and E. Weinstein, "Signal enhancement using beamforming and nonstationarity with applications to speech," IEEE Trans. Signal Processing, vol. 49, no. 8, Aug. 2001, pp. 1614-1626. https://doi.org/10.1109/78.934132
  11. E. Hogenauer, "An economical class of digital filters for decimation and interpolation," IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 29, no. 2, Apr. 1981, pp. 155-162. https://doi.org/10.1109/TASSP.1981.1163535