DOI QR코드

DOI QR Code

Elastic analysis of arbitrary shape plates using Meshless local Petrov-Galerkin method

  • Edalati, H. (Faculty of Mechanical Engineering, Jasb Branch, Islamic Azad University) ;
  • Soltani, B. (Faculty of Mechanical Engineering, University of Kashan)
  • 투고 : 2017.09.14
  • 심사 : 2018.01.27
  • 발행 : 2018.10.25

초록

In this study the stress analysis of orthotropic thin plate with arbitrary shapes for different boundary conditionsis investigated. Meshfreemethod is applied to static analysis of thin plates with various geometries based on the Kirchhoff classical plate theory. According to the meshfree method the domain of the plates are expressed through a set of nodes without using mesh. In this method, a set of nodes are defined in a standard rectangular domain, then via a third order map, these nodes are transferred to the main domain of the original geometry; therefore the analysis of the plates can be done. Herein, Meshless local Petrov-Galerkin (MLPG) as a meshfree numerical method is utilized. The MLS function in MLPG does not satisfy essential boundary conditions using Delta Kronecker. In the MLPG method, direct interpolation of the boundary conditions can be applied due to constructing node by node of the system equations. The detailed parametric study is conducted, focusing on the arbitrary geometries of the thin plates. Results show that the meshfree method provides better accuracy rather than finite element method. Also, it is found that trend of the figures have good agreement with relevant published papers.

키워드

과제정보

연구 과제 주관 기관 : University of Kashan

참고문헌

  1. Akgul, M., Demir, M. and Akay, A.E. (2017), "Analyzing dynamic curve widening on forest roads", J. Forest. Res., 28(2), 411-417. https://doi.org/10.1007/s11676-016-0316-0
  2. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
  3. Benchiha, A., Madani, K., Touzain, S., Feaugas, X. and Ratwani, M. (2016), "Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the Stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch", Steel Compos. Struct., 20(4), 951-962. https://doi.org/10.12989/scs.2016.20.4.951
  4. Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59(2), 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X
  5. Colagrossi, A. and Landrini, M. (2003), "Numerical simulation of interfacial flows by smoothed particle hydrodynamics", J. Comput. Phys., 191(2), 448-475. https://doi.org/10.1016/S0021-9991(03)00324-3
  6. Fadodun, O.O., Borokinni, A.S., Layeni, O.P. and Akinola, A.P. (2017), "Dynamic analysis of a transversely isotropic nonclassical thin plate", Wind Struct., 25(1), 25-38. https://doi.org/10.12989/WAS.2017.25.1.025
  7. Johnson, G.R., Stryk. R.A. and Beissel, S.R. (1996), "SPH for high velocity impact computations", Comput. Method. Appl. M., 139(1-4), 347-373. https://doi.org/10.1016/S0045-7825(96)01089-4
  8. Hadji, L., Zouatnia, N. and Kassoul, A. (2016), "Bending analysis of FGM plates using a sinusoidal shear deformation theory", Wind Struct., 23(6), 543-558. https://doi.org/10.12989/was.2016.23.6.543
  9. Kaw, A.K. (2006), Mechanics of composite materials. CRC Press, Taylor & Francis Group.
  10. Krysl, P. and Belytschko, T. (1996), "Analysis of thin plates by the element-free Galerkin method", Comput. Mech., 17, 26-35.
  11. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  12. Liew, K.M., Zhao, X. and Ferreira, A.J.M. (2011), "A review of meshless methods for laminated and functionally graded plates and shells", Compos. Struct., 93(8), 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018
  13. Liu, G.R. (2002), "Meshfree methods-moving beyond the Finite element method", CRC Press.
  14. Liu, G.R. and Gu, Y.T. (2005), An introduction to mesh free methods and their programming, Springier.
  15. Liu, G.R., Chen, X. and Reddt, J.N. (2002), "Bucking of symmetrically laminated composite plates using the elementfree Galerkin method", Struct. Stab. Dynam., 2(3), 281-294. https://doi.org/10.1142/S0219455402000634
  16. Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle method for structural dynamics", Int. J. Numer. Meth. Eng., 38, 1655-1679. https://doi.org/10.1002/nme.1620381005
  17. Memar Ardestani, M., Soltani, B. and Shams, Sh. (2014), "Analysis of functionally graded stiffened plates based on FSDT utilizing reproducing kernel particle method", Compos. Struct., 112, 231-240. https://doi.org/10.1016/j.compstruct.2014.01.032
  18. Ouatouati, A.E. and Johnson., D.A. (1999), "A new approach for numerical modal analysis using the element free method", Int. J. Numer. Meth. Eng., 46, 1-27. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<1::AID-NME659>3.0.CO;2-G
  19. Sridhar, C. and Rao, K.P. (1994), "Large deformation finite element analysis of laminated circular composite plates", Comput. Struct., 54, 59-64.
  20. Reddy, J.N. (2003). Mechanics of Laminated Composite Plates and shell theory and analysis, CRC PRESS.
  21. Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer.
  22. Sladek, J., Sladek, V., Stanak, P., Zhang, C. and Wünsche, M. (2013), "Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method", Eng. Struct., 47, 81-89. https://doi.org/10.1016/j.engstruct.2012.02.034
  23. Sladek, J., Sladek, V., Krivacek, J., Wen, P.H. and Zhang, Ch. (2007), "Meshless local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynamic load", Comput. Meth. Appl., 196, 2681-2691. https://doi.org/10.1016/j.cma.2007.01.014
  24. Sladek, J., Sladek, V., Hellmich, Ch., Eberhardsteiner, J., (2007) "Analysis of thick functionally graded plates by local integral equation method", Communic. Numeric. Meth. Eng., 23,733-754
  25. Sladek, J., Sladek, V., Solek, P. and Wen, P.H. (2008), "Thermal bending of Reissner-Mindlin plates by the MLPG", CMES - Comput. Meth. Appl, 28, 57-76.
  26. Sladek, V., Sladek, J. and Sator, L. (2013), "Physical decomposition of thin plate bending problems and their solution by mesh-free method", Eng. Anal. Bound.Elem., 37(2), 348-365. https://doi.org/10.1016/j.enganabound.2012.11.005
  27. Sator, L., Sladek, V. and Sladek, J. (2014), "Coupling effects in elastic analysis of FGM composite plates by mesh-free methods", Compos. Struct., 115, 100-110. https://doi.org/10.1016/j.compstruct.2014.04.016
  28. Szafrana, Z. (2005), "Elastic analysis of thin fiber-reinforced plates", Civil. Environ. Eng., 12, 231-242.
  29. Timoshenko, S. (1959). Theory of plates and shells.
  30. Wu, C.P. and Liu, Y.C. (2016), "A state space Meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 203-216. https://doi.org/10.12989/scs.2016.22.1.203
  31. Zienkiewicz, O.C. and Taylor, R.L. (1977), The finite element method, Taylor.