DOI QR코드

DOI QR Code

Mesoscale modeling of the temperature-dependent viscoelastic behavior of a Bitumen-Bound Gravels

  • 투고 : 2017.12.03
  • 심사 : 2018.04.18
  • 발행 : 2018.10.25

초록

A hierarchical multi-scale modeling strategy devoted to the study of a Bitumen-Bound Gravel (BBG) is presented in this paper. More precisely, the paper investigates the temperature-dependent linear viscoelastic of the material when submitted to low deformations levels and moderate number of cycles. In such a hierarchical approach, 3D digital Representative Elementary Volumes are built and the outcomes at a scale (here, the sub-mesoscale) are used as input data at the next higher scale (here, the mesoscale). The viscoelastic behavior of the bituminous phases at each scale is taken into account by means of a generalized Maxwell model: the bulk part of the behavior is separated from the deviatoric one and bulk and shear moduli are expanded into Prony series. Furthermore, the viscoelastic phases are considered to be thermorheologically simple: time and temperature are not independent. This behavior is reproduced by the Williams-Landel-Ferry law. By means of the FE simulations of stress relaxation tests, the parameters of the various features of this temperature-dependent viscoelastic behavior are identified.

키워드

참고문헌

  1. Allou, F., Takarli, M., Dubois, F., Petit, C. and Absi, J. (2015), "Numerical finite element formulation of the 3D linear viscoelastic material model: Complex Poisson's ratio of bituminous mixtures", Arch. Civil Mech. Eng., 15(4), 1138-1148. https://doi.org/10.1016/j.acme.2015.02.003
  2. Ambassa, Z. (2013), "Vers la modelisation du comportement a la fatigue des chaussees bitumineuses sous chargement reel", Ph.D. Dissertation, University of Limoges, France.
  3. Asadi, M., Mahboubi, A. and Thoeni, K. (2018) "Discrete modeling of sand-tire mixture considering grainscale deformability", Granul. Matt., 20(2), 18. https://doi.org/10.1007/s10035-018-0791-4
  4. Augusto, C.F. and Ki, H.M. (2015), "Micromechanical-analogical modelling of asphalt binder and asphalt mixture creep stiffness properties at low temperature", Road Mater. Pavem. Des., 16(1), 111-137.
  5. Bernard, F., Kamali-Bernard, S. and Prince, W. (2008), "3D multi-scale modelling of mechanical behavior of sound and leached mortar", Cement Concrete Res., 38, 449-458. https://doi.org/10.1016/j.cemconres.2007.11.015
  6. Bernard, F. and Kamali-Bernard, S. (2010), "Performance simulation and quantitative analysis of cementbased materials subjected to leaching", Comput. Mater. Sci., 50(1), 218-226. https://doi.org/10.1016/j.commatsci.2010.08.002
  7. Bernard, F. and Kamali-Bernard, S. (2012), "Predicting the evolution of mechanical and diffusivity properties of cement pastes and mortars for various hydration degrees-a numerical simulation investigation", Comput. Mater. Sci., 61, 106-115. https://doi.org/10.1016/j.commatsci.2012.03.023
  8. Bernard, F. and Kamali-Bernard, S. (2015), "Numerical study of ITZ contribution on mechanical behavior and diffusivity of mortars", Comput. Mater. Sci., 102, 250-257. https://doi.org/10.1016/j.commatsci.2015.02.016
  9. Brahim, K.V., Maryam, M.M., Abbas, R.M.R. and Gholam, H.R. (2017), "Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS", Comput. Concrete, 19(4), 435-442. https://doi.org/10.12989/cac.2017.19.4.435
  10. Comby-Peyrot, I., Bernard, F., Bouchard, P.O., Bay, F. and Garcia-Diaz, E. (2009), "Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction", Comput. Mater. Sci., 46(4), 1163-1177. https://doi.org/10.1016/j.commatsci.2009.06.002
  11. Di Benedetto, H. (1990), "Nouvelle approche du comportement des enrobes bitumineux: Resultats experimentaux et formulation rheologique", Proceedings of the 4th RILEM Symposium on Mechanical Tests for Bituminous Mixes, Characterization, Design and Quality Control, Budapest.
  12. Eyad, M., Scarpas, A., Alieh, A., Koumbakonam, R.R. and Cor, K. (2016), "Finite element modelling of field compaction of hot mix asphalt. Part I: Theory", Road Mater. Pavem. Des., 17(1), 13-33.
  13. Fu, J., Bernard, F. and Kamali-Bernard, S. (2017a), "First-principles calculations of typical anisotropic cubic and hexagonal structures and homogenized moduli estimation based on the Y-parameter: Application to CaO, MgO, CH and Calcite $CaCO_3$", J. Phys. Chem. Sol., 101, 74-89. https://doi.org/10.1016/j.jpcs.2016.10.010
  14. Fu, J., Bernard, F. and Kamali-Bernard, S. (2017b), "Assessment of the elastic properties of amorphous calcium silicates hydrates (I) and (II) structures by molecular dynamics simulation", Molecul. Simulat., In Press.
  15. Grondin, F., Dumontet, H., Hamida, A.B., Mounajed, G. and Boussa, H. (2007), "Multi-scales modelling for the behaviour of damaged concrete", Cement Concrete Res., 37(10), 1453-1462. https://doi.org/10.1016/j.cemconres.2007.05.012
  16. Hadi, H. and Vahab, S. (2016), "Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC)", Comput. Concrete, 18(1), 39-51. https://doi.org/10.12989/CAC.2016.18.1.039
  17. Ioana, M.A., Cyrille, C., Duchez, J.L. and Saida, M. (2017), "Modelling of the fatigue damage of a geogridreinforced asphalt concrete", Road Mater. Pavem. Des., 18(1), 250-262. https://doi.org/10.1080/14680629.2016.1159973
  18. Kamali-Bernard, S., Bernard, F. and Prince, W. (2009a), "Computer modelling of tritiated water diffusion test for cement-based materials", Comput. Mater. Sci., 45(2), 528-535. https://doi.org/10.1016/j.commatsci.2008.11.018
  19. Kamali-Bernard, S. and Bernard, F. (2009b), "Effect of tensile cracking on diffusivity of mortar: 3D numerical modelling", Comput. Mater. Sci., 47(1), 178-185. https://doi.org/10.1016/j.commatsci.2009.07.005
  20. Kamali-Bernard, S. and Bernard, F. (2011), "How to assess the long-term behaviour of a mortar submitted to leaching?", Eur. J. Environ. Civil Eng., 15(7), 1031-1043. https://doi.org/10.3166/ejece.15.1031-1043
  21. Kamali-Bernard, S., Keinde, D. and Bernard, F. (2014), "Effect of aggregate type on the concrete matrix/aggregates interface and its influence on the overall mechanical behavior. A numerical study", Key Eng. Mater., 617, 14-17.
  22. Keinde, D. (2014), "Etude du beton a l'echelle mesoscopique: Simulation numerique et tests de microindentation", Ph.D. Dissertation, INSA de Rennes.
  23. Keinde, D., Kamali-Bernard, S., Bernard, F. and Cisse, I. (2014), "Effect of the interfacial transition zone and the nature of the matrix-aggregate interface on the overall elastic and inelastic behaviour of concrete under compression: A 3D numerical study", Eur. J. Environ. Civil Eng., 18(10), 1167-1176.
  24. Narayan, S.P.A., Little, D.N. and Rajagopal, K.R. (2016), "Modelling the nonlinear viscoelastic response of asphalt binders", Road Mater. Pavement Des., 17(2), 123-132.
  25. Nguyen, H.N. (2008), "Etude numerique de la fissuration d'un milieu viscoelastique : Analyse de l'essai de rupture sur bitume", Ph.D. Dissertation, Ecole Nationale des Ponts et Chaussee.
  26. Saliba, J., Grondin, F., Matallah, M., Loukili, A. and Boussa, H. (2013), "Relevance of a mesoscopic modeling for the coupling between creep and damage in concrete", Mech. Time-Depend. Mater., 17(3), 481-499. https://doi.org/10.1007/s11043-012-9199-4
  27. Schlangen, E. and Qian, Z. (2009), "3d modeling of fracture in cement-based materials", J. Multisc. Modell., 1(2), 245-261. https://doi.org/10.1142/S1756973709000116
  28. She, W., Zhang, Y. and Jones, M.R. (2014), "Three-dimensional numerical modeling and simulation of the thermal properties of foamed concrete", Constr. Build. Mater., 50(1), 421-431. https://doi.org/10.1016/j.conbuildmat.2013.09.027
  29. She, W., Cao, X., Zhao, G., Cai, D., Jiang, J. and Hu, X. (2018), "Experimental and numerical investigation of the effect of soil type and fineness on soil frost heave behavior", Cold Reg. Sci. Technol., 148, 148-158. https://doi.org/10.1016/j.coldregions.2018.01.015
  30. Sow, L. (2018), "Approche couplee experimentation-modelisation multi-echelle pour la determination du comportement mecanique des graves routieres traitees aux liants. Application a la valorisation des Machefers d'Incineration de Dechets Non Dangereux", Ph.D. Dissertation, INSA Rennes.
  31. Tehrani, F.F., Absi, J., Allou, F. and Petit, C. (2013a), "Heterogeneous numerical modelling of asphalt concrete through use of a biphasic approach: Porous matrix/inclusions", Comput. Mater. Sci., 69, 186-196. https://doi.org/10.1016/j.commatsci.2012.11.041
  32. Tehrani, F.F., Absi, J., Allou, F. and Petit, C. (2013b), "Investigation into the impact of the use of 2D/3D digital models on the numerical calculation of the bituminous composites complex modulus", Comput. Mater. Sci., 79, 377-379.
  33. Van Breugel, K. (2008), "Beyond multi-scale modelling", Proceedings of the 2nd RILEM Symposium on Concrete Modelling, ConMod'08 Delft.
  34. Wei, S., Guotang, Z., Guotao, Y., Jinyang, J., Xiaoyu, C. and Yi, D. (2016), "Numerical analysis of the thermal behaviors of cellular concrete", Comput. Concrete, 18(3), 319-336. https://doi.org/10.12989/CAC.2016.18.3.319
  35. Wittman, F. (2008), "On the development of models and their application in concrete science", Proceedings of the 2nd RILEM Symposium on Concrete Modelling, ConMod'08 Delft.
  36. Yang, K.H., Ju, H.C. and Kwon, S.J. (2017), "Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition", Comput. Concrete, 19(2), 211-216. https://doi.org/10.12989/CAC.2017.19.2.211
  37. Zeljko, S. and Josko, O. (2017), "Meso scale model for fiber-reinforced-concrete: Microplane based approach", Comput. Concrete, 19(4), 375-385. https://doi.org/10.12989/cac.2017.19.4.375
  38. Zhu, H., Nicot, F. and Darve, F. (2016), "Meso-structure evolution in a 2D granular material during biaxial loading", Granul. Matt., 18(1), 3. https://doi.org/10.1007/s10035-016-0608-2