DOI QR코드

DOI QR Code

Characteristics of short term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes

2017 포항 지진시 단기간 지하수위 변동 및 하천 유량 변화 특성

  • Choi, Myoung-Rak (Department of Construction Safety and Disaster Prevention, Daejeon University) ;
  • Lee, Ho-Jeong (Department of Construction Safety and Disaster Prevention, Daejeon University) ;
  • Kim, Gyoo-Bum (Department of Construction Safety and Disaster Prevention, Daejeon University)
  • 최명락 (대전대학교 건설안전방재공학과) ;
  • 이호정 (대전대학교 건설안전방재공학과) ;
  • 김규범 (대전대학교 건설안전방재공학과)
  • Received : 2018.08.17
  • Accepted : 2018.10.08
  • Published : 2018.10.31

Abstract

Pohang earthquake (Main shock magnitude = 5.4) occurred in Southeastern region of South Korea in November 15, 2017. Groundwater levels of 6 monitoring wells with 5 minutes interval measurements located in that region and stream water levels of 4 stations located along the Hyeongsan-gang stream are used for the analysis of earthquake induced effects. Four groundwater monitoring wells show a short-term decrease of groundwater level after a main shock and one well does an increase and the maximum change is about 42.0 cm. Especially, groundwater levels at two monitoring wells near the epicenter are consistently maintained after a decrease. There is little relationship between earthquake magnitude or a distance to epicenter and changing amount of groundwater level and it may be due to the inhomogeneity of geologic material and unconsolidated sediments distribution. The changes in permeability of fractured zone and groundwater levels occasionally cause changes in stream flow rate, and water level of the Hyeongsan-gang stream in the study area decreases just after the earthquake and increases again up to the normal level and next shows an more gentle decreasing slope. Total increasing flow rates at S1 (upstream site) and S4 (downstream site) stations are about $12,096m^3$ and $116,640m^3$, respectively, during the increasing period.

2017년 11월 15일 한반도 남동부에서 본진 규모 5.4의 포항지진이 발생하였다. 해당 지역내 6개 지하수 관측정에서 측정된 5분 간격의 지하수위 자료 및 형산강내 4개소의 하천 수위 및 유량 자료를 이용하여 지진시의 특성을 분석하였다. 본진 발생시 4개 관측정에서 단기간내 지하수위 하강, 1개 관측정은 상승 특성을 보였으며, 수위 변동 폭은 최대 42.0 cm에 이르렀다. 특히, 진앙에 가까운 2개 관측정에서는 지하수위 하강 후 지속적으로 유지되는 특성이 나타났다. 지진 규모 및 진앙까지 거리와 지하수위 변동량은 상관성이 매우 낮은 것으로 분석되었는데, 이는 매질의 불균질성 및 미고결층의 분포 등이 영향을 미치는 것으로 보인다. 지진시 파쇄대 투수성 및 지하수위 변화는 종종 하천 유량 변화를 야기하는 것으로 알려져 있는데, 연구지역내 형산강의 수위는 지진 직후 하강하였으며 재상승 이후에는 보다 완만한 하강 추세를 유지한 것으로 나타났으며, 상승 기간 동안에 배출된 하천 총 유량은 상류의 S1 지점에서 $12,096m^3$, 하류인 S4 지점에서 $116,640m^3$으로 나타났다.

Keywords

Acknowledgement

Supported by : 국토교통과학기술진흥원

References

  1. Brodsky, E.E., Roeloffs, E., Woodcock, D., Gall, I. and Manga, M., 2003, A mechanism for sustained groundwater pressure changes induced by distant earthquakes. Journal of Geophysical Research, 108, 2390, doi:10.1029/2002JB002321.
  2. Chen, C.H., Wang, C.H., Wen, S., Yeh, T.K., Lin, C.H., Liu, J.Y., Yen, H.Y., Lin, C., Rau, R.J. and Lin, T.W., 2013, Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan. Hydrology and Earth System Sciences, 17, 1693-1703. https://doi.org/10.5194/hess-17-1693-2013
  3. Chen, J. and Wang, C.Y., 2009, Rising springs along the Silk Road. Geology, 37, 243-246, doi:10.1130/G25472A.1.
  4. Coussot, P., 1995, Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Physical Review Letters, 74, 3971-3974. https://doi.org/10.1103/PhysRevLett.74.3971
  5. Kim, G.B., Choi, M.R., Lee, C.J., Shin, S.H. and Kim, H.J., 2018, Characteristics of spatio-temporal distribution of groundwater level's change after 2016 Gyeong-ju earthquake. Journal of the Geological Society of Korea, 54(1), 93-105 (in Korean with English abstract). https://doi.org/10.14770/jgsk.2018.54.1.93
  6. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2018, Earthquake in the South-eastern Region of Korean Peninsula. KIGAM, Daejeon, 56 p.
  7. Lai, W.C., Hsu, K.C., Shieh, C.L., Lee, Y.P., Chung K.C., Koizumi, N. and Matsumoto, N., 2010, Evaluation of the effects of ground shaking and static volumetric strain change on earthquake-related groundwater level changes in Taiwan. Earth Planets Space, 62, 391-400. https://doi.org/10.5047/eps.2009.12.008
  8. Liu, C.-Y., Chia, Y., Chuang, P.-Y., Wang, C.-Y., Ge, S. and Teng, M.-H., 2018, Streamflow changes in the vicinity of seismogenic fault after the 1999 Chi-Chi earthquake. Pure and Applied Geophysics, 175, 2425-2434, DOI 10.1007/s00024-017-1670-3
  9. Manga, M., Brodsky, E.E. and Boone, M., 2003, Response of stream to multiple earthquakes. Geophysical Research Letters, 30(5), 18-1-18-4.
  10. Mohr, C.H., Manga, M., Wang, C.-Y. and Korup, O., 2017, Regional changes in streamflow after a megathrust earthquake. Earth and Planetary Science Letters, 458, 418-428, http://dx.doi.org/10.1016/j.epsl.2016.11.013.
  11. Mohr, C.H., Montgomery, D.R., Huber, A., Bronstert, A. and Iroume, A., 2012, Streamflow response in small upland catchments in the Chilean coastal range to the MW 8.8 Maule earthquake on 27 February 2010. Journal of Geophysical Research, 117, F02032, doi:10.1029/2011JF002138.
  12. Orihara, Y., Kamogawa, M. and Nagao, T., 2014, Preseismic changes of the level and temperature of confinced groundwater related to the 2011 Tohoku earthquake. Scientific Reports, 4, doi:10.1038/srep06907.
  13. Rojstaczer, S., Wolf, S. and Michel, R., 1995, Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes. Nature, 373, 237-239. https://doi.org/10.1038/373237a0
  14. Shi, Z., Wang, G., Manga, M. and Wang, C.Y., 2015, Continental-scale water-level response to a large earthquake. Geofluids, 15, 310-320. https://doi.org/10.1111/gfl.12099
  15. Wang, C.Y., 2007, Liquefaction beyond the near field. Seismological Research Letters, 78, 512-517. https://doi.org/10.1785/gssrl.78.5.512
  16. Wang, C.Y., Cheng, L.H., Chin, C.V. and Yu, S.B., 2001, Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 29, 831-834. https://doi.org/10.1130/0091-7613(2001)029<0831:CHROAA>2.0.CO;2
  17. Wang, C.Y. and Chia, Y., 2008, Mechanism of water level changes during earthquakes: near field versus intermediate field. Geophysical Research Letters, 35, L12402, doi:10.1029/2008GL034227.
  18. Wang, C.Y., Chia, Y., Wang, O.L. and Dreger, D., 2009, Role of S waves and Love waves in coseismic permeability enhancement. Geophysical Research Letters, 36, L09404, doi:10.1029/2009GL037330.
  19. Wang, C.Y. and Manga, M., 2014, Earthquakes and Water, Encyclopedia of Complexity and Systems Science. Springer Science + Business Media New York 2014, DOI 10.1007/978-3-642-27737-5_606-1.
  20. Wang, C.Y. and Manga, M., 2015, New streams and springs after the 2014 M6.0 South Napa earthquake. Nature Communications, 6, 7597, doi: 10.1038/ncomms8597.
  21. Wang, C.Y., Wang, C.H. and Kuo, C.H., 2004a, Temporal change in groundwater level following the 1999 (Mw=7.5) Chi-Chi earthquake (1999), Taiwan. Geofluids, 4, 210-220. https://doi.org/10.1111/j.1468-8123.2004.00082.x
  22. Wang, C.Y., Wang, C.H. and Manga, M., 2004b, Coseismic release of water from mountains: evidence from the 1999 (Mw=7.5) Chi-Chi earthquake. Geology, 32, 769-772. https://doi.org/10.1130/G20753.1
  23. Wang, S.J., Hsu, K.C., Lai, W.C. and Wang, C.L., 2015, Estimating the extent of stress influence by using earthquake triggering groundwater level variations in Taiwan. Journal of Asian Earth Sciences, 111, 373-383. https://doi.org/10.1016/j.jseaes.2015.06.030
  24. Wiesner, M., 1999, Morphology of particle deposits. Journal of Environmental Engineering, 125, 1124-1132. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:12(1124)
  25. Yan, R., Woith, H. and Wang, R., 2014, Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophysical Journal International, 199(1), 533-548. https://doi.org/10.1093/gji/ggu196
  26. Yan, R., Woith, H., Wang, R. and Zhang, Y., 2016, Earth's free oscillations excited by the 2011 Tohoku Mw 9.0 earhtquake detected with a groundwater level array in mainland China. Geohpysical Journal International, 206(3), 1457-1466. https://doi.org/10.1093/gji/ggw213

Cited by

  1. Quantifying effects of river stage control on groundwater system by cluster analysis and groundwater-level modeling vol.57, pp.1, 2018, https://doi.org/10.14770/jgsk.2021.57.1.79
  2. Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea vol.13, pp.17, 2018, https://doi.org/10.3390/w13172448