Acknowledgement
Supported by : A*STAR Pharos
References
-
Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F. : Atomically thin
$MoS_2$ : a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010) https://doi.org/10.1103/PhysRevLett.105.136805 -
Yan, T., Qiao, X., Liu, X., Tan, P., Zhang, X. : Photoluminescence properties and exciton dynamics in monolayer
$WSe_2$ . Appl. Phys. Lett. 105(10), 101901 (2014). https://doi.org/10.1063/1.4895471 -
Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., Eda, G. : Evolution of electronic structure in atomically thin sheets of
$WS_2$ and$WSe_2$ . ACS Nano 7(1), 791-797 (2013). https://doi.org/10.1021/nn305275h - Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W., Xiao, D. : Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88(8), 085433 (2013) https://doi.org/10.1103/PhysRevB.88.085433
- Riley, J.M., Mazzola, F., Dendzik, M., Michiardi, M., Takayama, T., Bawden, L., Granerod, C., Leandersson, M., Balasubramanian, T., Hoesch, M., Kim, T.K., Takagi, H., Meevasana, W., Hofmann, P., Bahramy, M.S., Wells, J.W., King, P.D.C. : Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835 (2014). https://doi.org/10.1038/nphys3105
-
Wu, S., Ross, J.S., Liu, G.-B., Aivazian, G., Jones, A., Fei, Z., Zhu, W., Xiao, D., Yao, W., Cobden, D., Xu, X. : Electrical tuning of valley magnetic moment through symmetry control in bilayer
$MoS_2$ . Nat. Phys. 9, 149 (2013). https://doi.org/10.1038/nphys2524 - Gong, Z., Liu, G.-B., Yu, H., Xiao, D., Cui, X., Xu, X., Yao, W. : Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013). https://doi.org/10.1038/ncomms3053
-
Li, X., Zhang, F., Niu, Q. : Unconventional quantum hall effect and tunable spin hall effect in dirac materials: application to an Isolated
$MoS_2$ Trilayer. Phys. Rev. Lett. 110(6), 066803 (2013) https://doi.org/10.1103/PhysRevLett.110.066803 -
Sie, E.J., McIver, J.W., Lee, Y.-H., Fu, L., Kong, J., Gedik, N. : Valley-selective optical stark effect in monolayer
$WS_2$ . Nat. Mater. 14, 290 (2014). https://doi.org/10.1038/nmat4156 - Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., Feng, J. : Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012). https://doi.org/10.1038/ncomm s1882
-
Sallen, G., Bouet, L., Marie, X., Wang, G., Zhu, C.R., Han, W.P., Lu, Y., Tan, P.H., Amand, T., Liu, B.L., Urbaszek, B. : Robust optical emission polarization in
$MoS_2$ monolayers through selective valley excitation. Phys. Rev. B 86(8), 081301 (2012) https://doi.org/10.1103/PhysRevB.86.081301 -
Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X. : Valley polarization in
$MoS_2$ monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012). https://doi.org/10.1038/nnano.2012.95 -
Jones, A.M., Yu, H., Ghimire, N.J., Wu, S., Aivazian, G., Ross, J.S., Zhao, B., Yan, J., Mandrus, D.G., Xiao, D., Yao, W., Xu, X. : Optical generation of excitonic valley coherence in monolayer
$WSe_2$ . Nat. Nanotechnol. 8, 634 (2013). https://doi.org/10.1038/nnano.2013.151 - Soklaski, R., Liang, Y., Yang, L. : Temperature effect on optical spectra of monolayer molybdenum disulfide. Appl. Phys. Lett. 104(19), 193110 (2014). https://doi.org/10.1063/1.4878098
-
Dhall, R., Seyler, K., Li, Z., Wickramaratne, D., Neupane, M.R., Chatzakis, I., Kosmowska, E., Lake, R.K., Xu, X., Cronin, S.B. : Strong circularly polarized photoluminescence from multilayer
$MoS_2$ through plasma driven direct-gap transition. ACS Photonics 3(3), 310-314 (2016). https://doi.org/10.1021/acsph otonics.5b005 93 -
Kioseoglou, G., Hanbicki, A.T., Currie, M., Friedman, A.L., Gunlycke, D., Jonker, B.T. : Valley polarization and intervalley scattering in monolayer
$MoS_2$ . Appl. Phys. Lett. 101(22), 221907 (2012). https://doi.org/10.1063/1.4768299 -
Mak, K.F., He, K., Shan, J., Heinz, T.F. : Control of valley polarization in monolayer
$MoS_2$ by optical helicity. Nat. Nanotechnol. 7, 494 (2012). https://doi.org/10.1038/nnano.2012.96 -
Mai, C., Barrette, A., Yu, Y., Semenov, Y.G., Kim, K.W., Cao, L., Gundogdu, K. : Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer
$MoS_2$ . Nano Lett. 14(1), 202-206 (2014). https://doi.org/10.1021/nl403742j -
Jeong, T.Y., Jin, B.M., Rhim, S.H., Debbichi, L., Park, J., Jang, Y.D., Lee, H.R., Chae, D.-H., Lee, D., Kim, Y.-H., Jung, S., Yee, K.J. : Coherent lattice vibrations in mono- and few-layer
$WSe_2$ . ACS Nano 10(5), 5560-5566 (2016). https://doi.org/10.1021/acsna no.6b02253 -
Yu, T., Wu, M.W. : Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer
$MoS_2$ . Phys. Rev. B 89(20), 205303 (2014) https://doi.org/10.1103/PhysRevB.89.205303 -
Zhu, C.R., Zhang, K., Glazov, M., Urbaszek, B., Amand, T., Ji, Z.W., Liu, B.L., Marie, X. : Exciton valley dynamics probed by Kerr rotation in
$WSe_2$ monolayers. Phys. Rev. B 90(16), 161302 (2014). https://doi.org/10.1103/PhysRevB.90.161302 -
del Corro, E., Botello-Mendez, A., Gillet, Y., Elias, A.L., Terrones, H., Feng, S., Fantini, C., Rhodes, D., Pradhan, N., Balicas, L., Gonze, X., Charlier, J.C., Terrones, M., Pimenta, M.A. : Atypical exciton-phonon interactions in
$WS_2$ and$WSe_2$ monolayers revealed by resonance Raman spectroscopy. Nano Lett. 16(4), 2363-2368 (2016). https://doi.org/10.1021/acs.nanol ett.5b05096 -
Chernikov, A., Berkelbach, T.C., Hill, H.M., Rigosi, A., Li, Y., Aslan, O.B., Reichman, D.R., Hybertsen, M.S., Heinz, T.F. : Exciton binding energy and nonhydrogenic Rydberg series in monolayer
$WS_2$ . Phys. Rev. Lett. 113(7), 076802 (2014) https://doi.org/10.1103/PhysRevLett.113.076802 -
Wang, G., Bouet, L., Lagarde, D., Vidal, M., Balocchi, A., Amand, T., Marie, X., Urbaszek, B. : Valley dynamics probed through charged and neutral exciton emission in monolayer
$WSe_2$ . Phys. Rev. B 90(7), 075413 (2014) https://doi.org/10.1103/PhysRevB.90.075413 -
You, Y., Zhang, X.-X., Berkelbach, T.C., Hybertsen, M.S., Reichman, D.R., Heinz, T.F. : Observation of biexcitons in monolayer
$WSe_2$ . Nat. Phys. 11, 477 (2015). https://doi.org/10.1038/nphys3324 -
Hsu, W.-T., Chen, Y.-L., Chen, C.-H., Liu, P.-S., Hou, T.-H., Li, L.-J., Chang, W.-H. : Optically initialized robust valley-polarized holes in monolayer
$WSe_2$ . Nat. Commun. 6, 8963 (2015). https://doi.org/10.1038/ncomms9963 -
Sercombe, D., Schwarz, S., Pozo-Zamudio, O.D., Liu, F., Robinson, B.J., Chekhovich, E.A., Tartakovskii, I.I., Kolosov, O., Tartakovskii, A.I. : Optical investigation of the natural electron doping in thin
$MoS_2$ films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013). https://doi.org/10.1038/srep03489 - Varshni, Y.P. : Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149-154 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
-
Arora, A., Koperski, M., Nogajewski, K., Marcus, J., Faugeras, C., Potemski, M. : Excitonic resonances in thin films of
$WSe_2$ : from monolayer to bulk material. Nanoscale 7(23), 10421-10429 (2015). https://doi.org/10.1039/C5NR01536G -
Huang, J., Hoang, T.B., Mikkelsen, M.H. : Probing the origin of excitonic states in monolayer
$WSe_2$ . Sci. Rep. 6, 22414 (2016). https://doi.org/10.1038/srep22414 -
Yan, T., Qiao, X., Tan, P., Zhang, X. : Valley depolarization in monolayer
$WSe_2$ . Sci. Rep. 5, 15625 (2015). https://doi.org/10.1038/srep1 5625 -
Lagarde, D., Bouet, L., Marie, X., Zhu, C.R., Liu, B.L., Amand, T., Tan, P.H., Urbaszek, B. : Carrier and polarization dynamics in monolayer
$MoS_2$ . Phys. Rev. Lett. 112(4), 047401 (2014) https://doi.org/10.1103/PhysRevLett.112.047401 -
Koirala, S., Mouri, S., Miyauchi, Y., Matsuda, K. : Homogeneous linewidth broadening and exciton dephasing mechanism in
$MoTe_2$ . Phys. Rev. B 93(7), 075411 (2016) https://doi.org/10.1103/PhysRevB.93.075411 - Dey, P., Paul, J., Wang, Z., Stevens, C.E., Liu, C., Romero, A.H., Shan, J., Hilton, D.J., Karaiskaj, D. : Optical coherence in atomicmonolayer transition-metal dichalcogenides limited by electron-phonon interactions. Phys. Rev. Lett. 116(12), 127402 (2016) https://doi.org/10.1103/PhysRevLett.116.127402
- Selig, M., Berghauser, G., Raja, A., Nagler, P., Schuller, C., Heinz, T.F., Korn, T., Chernikov, A., Malic, E., Knorr, A. : Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7, 13279 (2016). https://doi.org/10.1038/ncomms13279
-
Cadiz, F., Courtade, E., Robert, C., Wang, G., Shen, Y., Cai, H., Taniguchi, T., Watanabe, K., Carrere, H., Lagarde, D., Manca, M., Amand, T., Renucci, P., Tongay, S., Marie, X., Urbaszek, B. : Excitonic Linewidth approaching the homogeneous limit in
$MoS_2$ -based van der Waals heterostructures. Phys. Rev. X 7(2), 021026 (2017) - Moody, G., Kavir Dass, C., Hao, K., Chen, C.-H., Li, L.-J., Singh, A., Tran, K., Clark, G., Xu, X., Berghauser, G., Malic, E., Knorr, A., Li, X. : Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015). https://doi.org/10.1038/ncomms9315
-
Hao, K., Moody, G., Wu, F., Dass, C.K., Xu, L., Chen, C.-H., Sun, L., Li, M.-Y., Li, L.-J., MacDonald, A.H., Li, X. : Direct measurement of exciton valley coherence in monolayer
$WSe_2$ . Nat. Phys. 12, 677 (2016). https://doi.org/10.1038/nphys3674 -
Chow, C.M., Yu, H., Jones, A.M., Schaibley, J.R., Koehler, M., Mandrus, D.G., Merlin, R., Yao, W., Xu, X. : Phonon-assisted oscillatory exciton dynamics in monolayer
$MoSe_2$ . npj 2D Mater. Appl. 1(1), 33 (2017). https://doi.org/10.1038/s41699-017-0035-1
Cited by
- Toward Valley‐Coupled Spin Qubits vol.3, pp.6, 2018, https://doi.org/10.1002/qute.201900123
- WSe 2 2D p‐type semiconductor‐based electronic devices for information technology: Design, preparation, and applications vol.2, pp.4, 2018, https://doi.org/10.1002/inf2.12093
- Evidence of Rotational Fröhlich Coupling in Polaronic Trions vol.125, pp.8, 2018, https://doi.org/10.1103/physrevlett.125.086803
- Temperature Dependent Structural Evolution of WSe2: A Synchrotron X-ray Diffraction Study vol.5, pp.4, 2018, https://doi.org/10.3390/condmat5040076
- Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS2 Grown on SrTiO3 vol.14, pp.12, 2018, https://doi.org/10.1021/acsnano.0c04801
-
Nonclassical Exciton Diffusion in Monolayer
$ \mathrm{WSe}_{2}$ vol.127, pp.7, 2021, https://doi.org/10.1103/physrevlett.127.076801 -
Spectral asymmetry of phonon sideband luminescence in monolayer and bilayer
$ \mathrm{WSe}_{2}$ vol.3, pp.4, 2021, https://doi.org/10.1103/physrevresearch.3.l042019 - Phonon Coupling and Dielectric Response in 2D Semiconductor vol.16, pp.11, 2018, https://doi.org/10.1142/s1793292021501319