DOI QR코드

DOI QR Code

Effect of Phonons on Valley Depolarization in Monolayer WSe2

  • Chellappan, Vijila (Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR)) ;
  • Pang, Ai Lin Christina (Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR)) ;
  • Sarkar, Soumya (NUS Nanoscience and Nanotechnology Initiative (NUSNNI), National University of Singapore) ;
  • Ooi, Zi En (Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR)) ;
  • Goh, Kuan Eng Johnson (Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR))
  • Received : 2018.04.16
  • Accepted : 2018.07.19
  • Published : 2018.11.10

Abstract

In this paper, temperature dependence of the excitonic bands in a mechanically exfoliated tungsten diselenide ($WSe_2$) monolayer is studied using photoluminescence and circular dichroic photoluminescence (PL) in the temperature range between 8 and 300 K. The peak energies associated with the neutral exciton (A), charged exciton (trion) and localized excitons are extracted from the PL spectra revealing a trion binding energy of around 30 meV. The circular dichroic PL measured at 8 K shows about 45% valley polarisation that sharply reduces with increasing temperature to 5% at 300 K with photoexcitation energy of 1.96 eV. A detailed analysis of the emission line-width suggests that the rapid decrease of valley polarisation with the increase of temperature is caused by the strong exciton-phonon interactions which efficiently scatter the excitons into different excitonic states that are easily accessible due to the supply of excess photoexcitation energy. The emission line-width broadening with the increase of temperature indicate residual exciton dephasing lifetime < 100 fs, that correlates with the observed rapid valley depolarisation.

Keywords

Acknowledgement

Supported by : A*STAR Pharos

References

  1. Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F. : Atomically thin $MoS_2$ : a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010) https://doi.org/10.1103/PhysRevLett.105.136805
  2. Yan, T., Qiao, X., Liu, X., Tan, P., Zhang, X. : Photoluminescence properties and exciton dynamics in monolayer $WSe_2$. Appl. Phys. Lett. 105(10), 101901 (2014). https://doi.org/10.1063/1.4895471
  3. Zhao, W., Ghorannevis, Z., Chu, L., Toh, M., Kloc, C., Tan, P.-H., Eda, G. : Evolution of electronic structure in atomically thin sheets of $WS_2$ and $WSe_2$. ACS Nano 7(1), 791-797 (2013). https://doi.org/10.1021/nn305275h
  4. Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W., Xiao, D. : Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88(8), 085433 (2013) https://doi.org/10.1103/PhysRevB.88.085433
  5. Riley, J.M., Mazzola, F., Dendzik, M., Michiardi, M., Takayama, T., Bawden, L., Granerod, C., Leandersson, M., Balasubramanian, T., Hoesch, M., Kim, T.K., Takagi, H., Meevasana, W., Hofmann, P., Bahramy, M.S., Wells, J.W., King, P.D.C. : Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 10, 835 (2014). https://doi.org/10.1038/nphys3105
  6. Wu, S., Ross, J.S., Liu, G.-B., Aivazian, G., Jones, A., Fei, Z., Zhu, W., Xiao, D., Yao, W., Cobden, D., Xu, X. : Electrical tuning of valley magnetic moment through symmetry control in bilayer $MoS_2$. Nat. Phys. 9, 149 (2013). https://doi.org/10.1038/nphys2524
  7. Gong, Z., Liu, G.-B., Yu, H., Xiao, D., Cui, X., Xu, X., Yao, W. : Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 4, 2053 (2013). https://doi.org/10.1038/ncomms3053
  8. Li, X., Zhang, F., Niu, Q. : Unconventional quantum hall effect and tunable spin hall effect in dirac materials: application to an Isolated $MoS_2$ Trilayer. Phys. Rev. Lett. 110(6), 066803 (2013) https://doi.org/10.1103/PhysRevLett.110.066803
  9. Sie, E.J., McIver, J.W., Lee, Y.-H., Fu, L., Kong, J., Gedik, N. : Valley-selective optical stark effect in monolayer $WS_2$. Nat. Mater. 14, 290 (2014). https://doi.org/10.1038/nmat4156
  10. Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., Feng, J. : Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012). https://doi.org/10.1038/ncomm s1882
  11. Sallen, G., Bouet, L., Marie, X., Wang, G., Zhu, C.R., Han, W.P., Lu, Y., Tan, P.H., Amand, T., Liu, B.L., Urbaszek, B. : Robust optical emission polarization in $MoS_2$ monolayers through selective valley excitation. Phys. Rev. B 86(8), 081301 (2012) https://doi.org/10.1103/PhysRevB.86.081301
  12. Zeng, H., Dai, J., Yao, W., Xiao, D., Cui, X. : Valley polarization in $MoS_2$ monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012). https://doi.org/10.1038/nnano.2012.95
  13. Jones, A.M., Yu, H., Ghimire, N.J., Wu, S., Aivazian, G., Ross, J.S., Zhao, B., Yan, J., Mandrus, D.G., Xiao, D., Yao, W., Xu, X. : Optical generation of excitonic valley coherence in monolayer $WSe_2$. Nat. Nanotechnol. 8, 634 (2013). https://doi.org/10.1038/nnano.2013.151
  14. Soklaski, R., Liang, Y., Yang, L. : Temperature effect on optical spectra of monolayer molybdenum disulfide. Appl. Phys. Lett. 104(19), 193110 (2014). https://doi.org/10.1063/1.4878098
  15. Dhall, R., Seyler, K., Li, Z., Wickramaratne, D., Neupane, M.R., Chatzakis, I., Kosmowska, E., Lake, R.K., Xu, X., Cronin, S.B. : Strong circularly polarized photoluminescence from multilayer $MoS_2$ through plasma driven direct-gap transition. ACS Photonics 3(3), 310-314 (2016). https://doi.org/10.1021/acsph otonics.5b005 93
  16. Kioseoglou, G., Hanbicki, A.T., Currie, M., Friedman, A.L., Gunlycke, D., Jonker, B.T. : Valley polarization and intervalley scattering in monolayer $MoS_2$. Appl. Phys. Lett. 101(22), 221907 (2012). https://doi.org/10.1063/1.4768299
  17. Mak, K.F., He, K., Shan, J., Heinz, T.F. : Control of valley polarization in monolayer $MoS_2$ by optical helicity. Nat. Nanotechnol. 7, 494 (2012). https://doi.org/10.1038/nnano.2012.96
  18. Mai, C., Barrette, A., Yu, Y., Semenov, Y.G., Kim, K.W., Cao, L., Gundogdu, K. : Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer $MoS_2$. Nano Lett. 14(1), 202-206 (2014). https://doi.org/10.1021/nl403742j
  19. Jeong, T.Y., Jin, B.M., Rhim, S.H., Debbichi, L., Park, J., Jang, Y.D., Lee, H.R., Chae, D.-H., Lee, D., Kim, Y.-H., Jung, S., Yee, K.J. : Coherent lattice vibrations in mono- and few-layer $WSe_2$. ACS Nano 10(5), 5560-5566 (2016). https://doi.org/10.1021/acsna no.6b02253
  20. Yu, T., Wu, M.W. : Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer $MoS_2$. Phys. Rev. B 89(20), 205303 (2014) https://doi.org/10.1103/PhysRevB.89.205303
  21. Zhu, C.R., Zhang, K., Glazov, M., Urbaszek, B., Amand, T., Ji, Z.W., Liu, B.L., Marie, X. : Exciton valley dynamics probed by Kerr rotation in $WSe_2$ monolayers. Phys. Rev. B 90(16), 161302 (2014). https://doi.org/10.1103/PhysRevB.90.161302
  22. del Corro, E., Botello-Mendez, A., Gillet, Y., Elias, A.L., Terrones, H., Feng, S., Fantini, C., Rhodes, D., Pradhan, N., Balicas, L., Gonze, X., Charlier, J.C., Terrones, M., Pimenta, M.A. : Atypical exciton-phonon interactions in $WS_2$ and $WSe_2$ monolayers revealed by resonance Raman spectroscopy. Nano Lett. 16(4), 2363-2368 (2016). https://doi.org/10.1021/acs.nanol ett.5b05096
  23. Chernikov, A., Berkelbach, T.C., Hill, H.M., Rigosi, A., Li, Y., Aslan, O.B., Reichman, D.R., Hybertsen, M.S., Heinz, T.F. : Exciton binding energy and nonhydrogenic Rydberg series in monolayer $WS_2$. Phys. Rev. Lett. 113(7), 076802 (2014) https://doi.org/10.1103/PhysRevLett.113.076802
  24. Wang, G., Bouet, L., Lagarde, D., Vidal, M., Balocchi, A., Amand, T., Marie, X., Urbaszek, B. : Valley dynamics probed through charged and neutral exciton emission in monolayer $WSe_2$. Phys. Rev. B 90(7), 075413 (2014) https://doi.org/10.1103/PhysRevB.90.075413
  25. You, Y., Zhang, X.-X., Berkelbach, T.C., Hybertsen, M.S., Reichman, D.R., Heinz, T.F. : Observation of biexcitons in monolayer $WSe_2$. Nat. Phys. 11, 477 (2015). https://doi.org/10.1038/nphys3324
  26. Hsu, W.-T., Chen, Y.-L., Chen, C.-H., Liu, P.-S., Hou, T.-H., Li, L.-J., Chang, W.-H. : Optically initialized robust valley-polarized holes in monolayer $WSe_2$. Nat. Commun. 6, 8963 (2015). https://doi.org/10.1038/ncomms9963
  27. Sercombe, D., Schwarz, S., Pozo-Zamudio, O.D., Liu, F., Robinson, B.J., Chekhovich, E.A., Tartakovskii, I.I., Kolosov, O., Tartakovskii, A.I. : Optical investigation of the natural electron doping in thin $MoS_2$ films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013). https://doi.org/10.1038/srep03489
  28. Varshni, Y.P. : Temperature dependence of the energy gap in semiconductors. Physica 34(1), 149-154 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  29. Arora, A., Koperski, M., Nogajewski, K., Marcus, J., Faugeras, C., Potemski, M. : Excitonic resonances in thin films of $WSe_2$: from monolayer to bulk material. Nanoscale 7(23), 10421-10429 (2015). https://doi.org/10.1039/C5NR01536G
  30. Huang, J., Hoang, T.B., Mikkelsen, M.H. : Probing the origin of excitonic states in monolayer $WSe_2$. Sci. Rep. 6, 22414 (2016). https://doi.org/10.1038/srep22414
  31. Yan, T., Qiao, X., Tan, P., Zhang, X. : Valley depolarization in monolayer $WSe_2$. Sci. Rep. 5, 15625 (2015). https://doi.org/10.1038/srep1 5625
  32. Lagarde, D., Bouet, L., Marie, X., Zhu, C.R., Liu, B.L., Amand, T., Tan, P.H., Urbaszek, B. : Carrier and polarization dynamics in monolayer $MoS_2$. Phys. Rev. Lett. 112(4), 047401 (2014) https://doi.org/10.1103/PhysRevLett.112.047401
  33. Koirala, S., Mouri, S., Miyauchi, Y., Matsuda, K. : Homogeneous linewidth broadening and exciton dephasing mechanism in $MoTe_2$. Phys. Rev. B 93(7), 075411 (2016) https://doi.org/10.1103/PhysRevB.93.075411
  34. Dey, P., Paul, J., Wang, Z., Stevens, C.E., Liu, C., Romero, A.H., Shan, J., Hilton, D.J., Karaiskaj, D. : Optical coherence in atomicmonolayer transition-metal dichalcogenides limited by electron-phonon interactions. Phys. Rev. Lett. 116(12), 127402 (2016) https://doi.org/10.1103/PhysRevLett.116.127402
  35. Selig, M., Berghauser, G., Raja, A., Nagler, P., Schuller, C., Heinz, T.F., Korn, T., Chernikov, A., Malic, E., Knorr, A. : Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat. Commun. 7, 13279 (2016). https://doi.org/10.1038/ncomms13279
  36. Cadiz, F., Courtade, E., Robert, C., Wang, G., Shen, Y., Cai, H., Taniguchi, T., Watanabe, K., Carrere, H., Lagarde, D., Manca, M., Amand, T., Renucci, P., Tongay, S., Marie, X., Urbaszek, B. : Excitonic Linewidth approaching the homogeneous limit in $MoS_2$-based van der Waals heterostructures. Phys. Rev. X 7(2), 021026 (2017)
  37. Moody, G., Kavir Dass, C., Hao, K., Chen, C.-H., Li, L.-J., Singh, A., Tran, K., Clark, G., Xu, X., Berghauser, G., Malic, E., Knorr, A., Li, X. : Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun. 6, 8315 (2015). https://doi.org/10.1038/ncomms9315
  38. Hao, K., Moody, G., Wu, F., Dass, C.K., Xu, L., Chen, C.-H., Sun, L., Li, M.-Y., Li, L.-J., MacDonald, A.H., Li, X. : Direct measurement of exciton valley coherence in monolayer $WSe_2$. Nat. Phys. 12, 677 (2016). https://doi.org/10.1038/nphys3674
  39. Chow, C.M., Yu, H., Jones, A.M., Schaibley, J.R., Koehler, M., Mandrus, D.G., Merlin, R., Yao, W., Xu, X. : Phonon-assisted oscillatory exciton dynamics in monolayer $MoSe_2$. npj 2D Mater. Appl. 1(1), 33 (2017). https://doi.org/10.1038/s41699-017-0035-1

Cited by

  1. Toward Valley‐Coupled Spin Qubits vol.3, pp.6, 2018, https://doi.org/10.1002/qute.201900123
  2. WSe 2 2D p‐type semiconductor‐based electronic devices for information technology: Design, preparation, and applications vol.2, pp.4, 2018, https://doi.org/10.1002/inf2.12093
  3. Evidence of Rotational Fröhlich Coupling in Polaronic Trions vol.125, pp.8, 2018, https://doi.org/10.1103/physrevlett.125.086803
  4. Temperature Dependent Structural Evolution of WSe2: A Synchrotron X-ray Diffraction Study vol.5, pp.4, 2018, https://doi.org/10.3390/condmat5040076
  5. Direct Bandgap-like Strong Photoluminescence from Twisted Multilayer MoS2 Grown on SrTiO3 vol.14, pp.12, 2018, https://doi.org/10.1021/acsnano.0c04801
  6. Nonclassical Exciton Diffusion in Monolayer $ \mathrm{WSe}_{2}$ vol.127, pp.7, 2021, https://doi.org/10.1103/physrevlett.127.076801
  7. Spectral asymmetry of phonon sideband luminescence in monolayer and bilayer $ \mathrm{WSe}_{2}$ vol.3, pp.4, 2021, https://doi.org/10.1103/physrevresearch.3.l042019
  8. Phonon Coupling and Dielectric Response in 2D Semiconductor vol.16, pp.11, 2018, https://doi.org/10.1142/s1793292021501319