Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D. : Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 24, 905 (2016) https://doi.org/10.1002/pip.2788
- National Renewable Energy Laboratory (NREL): Photovoltaic research. http://www.nrel.gov/ncpv/images/efficiencychart.jpg. Accessed 24 Jan 2018
-
Abdelmageed, G., Jewell, L., Hellier, K., Seymour, L., Luo, B., Bridges, F., Zhang, J.Z., Carter, S. : Mechanisms for light induced degradation in
$MAPbI_3$ perovskite thin films and solar cells. Appl. Phys. Lett. 109, 233905 (2016) https://doi.org/10.1063/1.4967840 - Liu, D., Kelly, T.L. : Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2014) https://doi.org/10.1038/nphoton.2013.342
- Dymshits, A., Lagher, L., Etgar, L. : Parameters influencing the growth of ZnO nanowires as efficient low temperature flexible perovskite-based solar cells. Materials 9, 60 (2016) https://doi.org/10.3390/ma9010060
- Baena, J.-P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Gratzelb, M., Hagfeldt, A. : Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928 (2015) https://doi.org/10.1039/C5EE02608C
- Wang, L., Fu, W., Gu, Z., Fan, C., Yang, X., Li, H., Chen, H. : Low temperature solution processed planar heterojunction perovskite solar cells with CdSe nanocrystal as electron transport/extraction layer. J. Mater. Chem. C 2, 9087 (2014) https://doi.org/10.1039/C4TC01875C
-
Chiang, C.-H., Tseng, Z.-L., Wu, C.-G. : Planar heterojunction
$perovskite/PC_{71}$ BM solar cells with enhanced open-circuit voltage via a (2/1)-Step spin-coating process. J. Mater. Chem. A 2, 15897 (2014) https://doi.org/10.1039/C4TA03674C - Shin, G.S., Choi, W.-G., Na, S., Gokdemir, F.P., Moon, T. : Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018) https://doi.org/10.1007/s13391-018-0042-1
- Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T. : Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017) https://doi.org/10.1007/s13391-017-6239-x
- Peng, H., Sun, W., Li, Y., Yan, W., Yu, P., Zhou, H., Bian, Z., Huang, C. : High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. J. Photonics Energy 6, 022002 (2016) https://doi.org/10.1117/1.JPE.6.022002
- Wang, J., Liu, L., Liu, S., Yang, L., Zhang, B., Feng, S., Yang, J., Meng, X., Fu, W., Yang, H. : Influence of a compact Cds layer on the photovoltaic performance of perovskite-based solar cells. Sustain. Energy Fuels 1, 504 (2017) https://doi.org/10.1039/C6SE00070C
- Hwang, I., Yong, K. : Novel CdS hole-blocking layer for photostable perovskite solar cells. ACS Appl. Mater. Interfaces. 8, 4226 (2016) https://doi.org/10.1021/acsami.5b12336
- Liu, J., Gao, C., Luo, L., Ye, Q., He, X., Ouyang, L., Guo, X., Zhuang, D., Liao, C., Mei, J., Lau, W. : Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J. Mater. Chem. A 3, 11750 (2015) https://doi.org/10.1039/C5TA01200G
- Gu, Z., Chen, F., Zhang, X., Liu, Y., Fan, C., Wu, G., Li, H., Chen, H. : Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Sol. Energy Mater. Sol. Cells 140, 396 (2015) https://doi.org/10.1016/j.solmat.2015.04.015
- Juarez-Perez, E.J., Wussler, M., Fabregat-Santiago, F., Lakus-Wollny, K., Mankel, E., Mayer, T., Jaegermann, W., Mora-Sero, I. : Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680 (2014) https://doi.org/10.1021/jz500059v
-
Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., Nicholas, R.J. : Low-temperature processed electron collection layers of graphene/
$TiO_2$ nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724 (2014) https://doi.org/10.1021/nl403997a -
Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.-W., Park, N.-G., Kang, B.K., Lee, J.-K., Cho, I.S., Yoon, D.H., Jung, H.S. : Reduced graphene oxide/mesoporous
$TiO_2$ nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces 7, 23521 (2015) https://doi.org/10.1021/acsami.5b06171 - Salas-Villasenor, A.L., Mejia, I., Sotelo-Lerma, M., Gnade, B.E., Quevedo-Lopez, M.A. : Performance and stability of solution-based cadmium sulfide thin film transistors: role of CdS cluster size and film composition. Appl. Phys. Lett. 101, 262103 (2012) https://doi.org/10.1063/1.4773184
- Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J. : Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012) https://doi.org/10.1126/science.1228604
- Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M. : Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013) https://doi.org/10.1038/nature12340
- Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Gratzel, M., Park, N.-G. : Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012) https://doi.org/10.1038/srep00591
-
Shi, J., Luo, Y., Wei, H., Luo, J., Dong, J., Lv, S., Xiao, J., Xu, Y., Zhu, L., Xu, X., Wu, H., Li, D., Meng, Q. : Modified two-step deposition method for high-efficiency
$TiO_2$ /$CH_3NH_3PbI_3$ heterojunction solar cells. ACS Appl. Mater. Interfaces. 6, 9711 (2014) https://doi.org/10.1021/am502131t - Liu, M., Johnston, M.B., Snaith, H.J. : Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013) https://doi.org/10.1038/nature12509
- Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.-L., Mohite, A.D. : High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015) https://doi.org/10.1126/science.aaa0472
- Stranks, S.D., Nayak, P.K., Zhang, W., Stergiopoulos, T., Snaith, H.J. : Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 2 (2015) https://doi.org/10.1002/anie.201410932
- Gao, P., Gratzel, M., Nazeeruddin, M.K. : Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448 (2014) https://doi.org/10.1039/C4EE00942H
- Longo, G., Gil-Escrig, L., Degen, M.J., Sessolo, M., Bolink, H.J. : Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376 (2015) https://doi.org/10.1039/C5CC01103E
-
Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Penga, W., Han, L. : Retarding the crystallization of
$PbI_2$ for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934 (2014) https://doi.org/10.1039/C4EE01624F -
Zhang, T., Yang, M., Zhao, Y., Zhu, K. : Controllable sequential deposition of planar
$CH_3NH_3PbI_3$ perovskite films via adjustable volume expansion. Nano Lett. 15, 3959 (2015) https://doi.org/10.1021/acs.nanolett.5b00843 - Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I. : Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014) https://doi.org/10.1038/nmat4014
- Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G. : Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015) https://doi.org/10.1021/jacs.5b04930
- Li, W., Fan, J., Li, J., Mai, Y., Wang, L. : Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137, 10399 (2015) https://doi.org/10.1021/jacs.5b06444
-
Jo, Y., Oh, K.S., Kim, M., Kim, K.-H., Lee, H., Lee, C.-W., Kim, D.S. : High performance of planar perovskite solar cells produced from
$PbI_2$ (DMSO) and$PbI_2$ (NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces 3, 1500768 (2016) https://doi.org/10.1002/admi.201500768 -
Zhang, H., Mao, J., He, H., Zhang, D., Zhu, H.L., Xie, F., Wong, K.S., Gratzel, M., Choy, W.C.H. : A smooth
$CH_3NH_3PbI_3$ film via a new approach for forming the$PbI_2$ nanostructure together with strategically high$CH_3NH_3I$ concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5, 1501354 (2015) https://doi.org/10.1002/aenm.201501354 - Zhang, H., Cheng, J., Li, D., Lin, F., Mao, J., Liang, C., Jen, A.K.-Y., Gratzel, M., Choy, W.C.H. : Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation. Adv. Mater. 29, 1604695 (2017) https://doi.org/10.1002/adma.201604695
- Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., Vak, D. : Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015) https://doi.org/10.1002/adma.201404598
- Wu, N., Shi, C., Ying, C., Zhang, J., Wang, M. : Pbicl: a new precursor solution for efficient planar perovskite solar cell by vaporassisted solution process. Appl. Surf. Sci. 357, 2372 (2015) https://doi.org/10.1016/j.apsusc.2015.09.254
-
Zhao, Y., Zhu, K. :
$CH_3NH_3Cl$ -assisted one-step solution growth of$CH_3NH_3PbI_3$ : structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014) https://doi.org/10.1021/jp502696w -
Mosconi, E., Ronca, E., Angelis, F.D. : First-principles investigation of the
$TiO_2$ /organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619 (2014) https://doi.org/10.1021/jz501127k - Salas-Villasenor, A.L., Mejia, I., Sotelo-Lerma, M., Guo, Z.B., Alshareef, H.N., Quevedo-Lopez, M.A. : Improved electrical stability of CdS thin film transistors through hydrogen-based thermal treatments. Semicond. Sci. Technol. 29, 085001 (2014) https://doi.org/10.1088/0268-1242/29/8/085001
-
Wang, M., Shi, C., Zhang, J., Wu, N., Ying, C. : Influence of
$PbI_2$ content in$PbI_2$ solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells. J. Solid State Chem. 231, 20 (2015) https://doi.org/10.1016/j.jssc.2015.08.002 -
Brixner, P.A.L.H., Chen, H.-Y., Foris, C.M. : X-ray study of the
$PbCl_{2-x}I_x$ and$PbBr_{2-x}I_x $ systems. J. Solid State Chem. 40, 336 (1981) https://doi.org/10.1016/0022-4596(81)90400-X -
Baltog, I., Baibarac, M., Lefrant, S. : Quantum well effect in bulk
$PbI_2$ crystals revealed by the anisotropy of photoluminescence and raman spectra. J. Phys. : Condens. Matter 21, 025507 (2009) https://doi.org/10.1088/0953-8984/21/2/025507 - Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y., Zhang, X. : Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A 5, 7423 (2017) https://doi.org/10.1039/C7TA00973A
- Behrisch, R., Grigull, S., Kreissig, U., Grotzschel, R. : Influence of surface roughness on measuring depth profiles and the total amount of implanted ions by RBS and ERDA. Nucl. Instrum. Methods Phys. Res. B 136-138, 628 (1998) https://doi.org/10.1016/S0168-583X(97)00798-2
- Simon, A., Paszti, F., Uzonyi, I., Manuaba, A., Kiss, A.Z., Rajta, I. : Observation of surface topography using an RBS microbeam. Nucl. Instrum. Methods Phys. Res. B 136-138, 344 (1998) https://doi.org/10.1016/S0168-583X(97)00704-0
- Zolnai, Z., Nagy, N., Deak, A., Battistig, G. : Three-dimensional view of the shape, size, and atomic composition of ordered nano-structures by Rutherford backscattering spectrometry. Phys. Rev. B 83, 233302 (2011) https://doi.org/10.1103/PhysRevB.83.233302
- Krupinski, M., Perzanowski, M., Zarzycki, Y., Marszalek, M. : Influence of surface topography on RBS measurements: case studies of (Cu/Fe/Pd) multilayers and FePdCu alloys nanopatterned by self-assembly. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015004 (2017) https://doi.org/10.1088/2043-6254/aa594e
-
Xu, F., Zhang, T., Li, G., Zhao, Y. : Synergetic effect of chloride doping and
$CH_3 NH_3PbCl_3 on$CH_3NH_3PbI_{3-x}Cl_x$ perovskite-based solar cells. Chemsuschem 10, 2365 (2017) https://doi.org/10.1002/cssc.201700487 - Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R. : Mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013) https://doi.org/10.1021/cm402919x
-
Maculan, G., Sheikh, A.D., Abdelhady, A.L., Saidaminov, M.I., Haque, M.A., Murali, B., Alarousu, E., Mohammed, O.F., Wu, T., Bakr, O.M. :
$CH_3NH_3PbCl_3$ single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781 (2015) https://doi.org/10.1021/acs.jpclett.5b01666 - Baena, J.-P.C., Anaya, M., Lozano, G., Tress, W., Domanski, K., Saliba, M., Matsui, T., Jacobsson, T.J., Calvo, M.E., Abate, A., Gratzel, M., Miguez, H., Hagfeldt, A. : Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv. Mater. 28, 5031 (2016) https://doi.org/10.1002/adma.201600624
- Hadadian, M., Baena, J.-P.C., Goharshadi, E.K., Ummedisingu, A., Seo, J.-Y., Luo, J., Gholipour, S., Saliba, M., Abate, A., Gratzel, M., Hagfeldt, A. : Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater. 28, 8681 (2016) https://doi.org/10.1002/adma.201602785
Cited by
- Controlled pH of PEDOT:PSS for Reproducible Efficiency in Inverted Perovskite Solar Cells: Independent of Active Area and Humidity vol.7, pp.9, 2018, https://doi.org/10.1021/acssuschemeng.8b06619
- Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells vol.15, pp.5, 2018, https://doi.org/10.1007/s13391-019-00163-6
- Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 vol.12, pp.1, 2018, https://doi.org/10.1038/s41427-020-0202-2