DOI QR코드

DOI QR Code

Effects of Chlorine Contents on Perovskite Solar Cell Structure Formed on CdS Electron Transport Layer Probed by Rutherford Backscattering

  • Sheikh, Md. Abdul Kuddus (School of Advanced Materials Engineering, Kookmin University) ;
  • Abdur, Rahim (School of Advanced Materials Engineering, Kookmin University) ;
  • Singh, Son (School of Advanced Materials Engineering, Kookmin University) ;
  • Kim, Jae-Hun (School of Advanced Materials Engineering, Kookmin University) ;
  • Min, Kyeong-Sik (School of Electrical Engineering, Kookmin University) ;
  • Kim, Jiyoung (Department of Materials Science and Engineering, The University of Texas at Dallas) ;
  • Lee, Jaegab (School of Advanced Materials Engineering, Kookmin University)
  • Received : 2018.03.16
  • Accepted : 2018.07.14
  • Published : 2018.11.10

Abstract

CdS synthesized by the chemical bath method at $70^{\circ}C$, has been used as an electron transport layer in the planar structure of the perovskite solar cells. A two-step spin process produced a mixed halide perovskite of $CH_3NH_3PbI_{3-x}Cl_x$ and a mixture of $PbCl_2$ and $PbI_2$ was deposited on CdS, followed by a sub-sequential reaction with MAI ($CH_3NH_3I$). The added $PbCl_2$ to $PbI_2$ in the first spin-step affected the structure, orientation, and shape of lead halides, which varied depending on the content of Cl. A small amount of Cl enhanced the surface morphology and the preferred orientation of $PbI_2$, which led to large and uniform grains of perovskite thin films. In contrast, the high content of Cl produces a new phase PbICl in addition to $PbI_2$, which leads to the small and highly uniform grains of perovskites. An improved surface coverage of perovskite films with the large and uniform grains maximized the performance of perovskite solar cells at 0.1 molar ratio of $PbCl_2$ to $PbI_2$. The depth profiling of elements in both lead halide films and mixed halide perovskite films were measured by Rutherford backscattering spectroscopy, revealing the distribution of chlorine along with the thickness, and providing the basis for the mechanism for enhanced preferred orientation of lead halide and the microstructure of perovskites.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D. : Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 24, 905 (2016) https://doi.org/10.1002/pip.2788
  2. National Renewable Energy Laboratory (NREL): Photovoltaic research. http://www.nrel.gov/ncpv/images/efficiencychart.jpg. Accessed 24 Jan 2018
  3. Abdelmageed, G., Jewell, L., Hellier, K., Seymour, L., Luo, B., Bridges, F., Zhang, J.Z., Carter, S. : Mechanisms for light induced degradation in $MAPbI_3$ perovskite thin films and solar cells. Appl. Phys. Lett. 109, 233905 (2016) https://doi.org/10.1063/1.4967840
  4. Liu, D., Kelly, T.L. : Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133 (2014) https://doi.org/10.1038/nphoton.2013.342
  5. Dymshits, A., Lagher, L., Etgar, L. : Parameters influencing the growth of ZnO nanowires as efficient low temperature flexible perovskite-based solar cells. Materials 9, 60 (2016) https://doi.org/10.3390/ma9010060
  6. Baena, J.-P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S.M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Gratzelb, M., Hagfeldt, A. : Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928 (2015) https://doi.org/10.1039/C5EE02608C
  7. Wang, L., Fu, W., Gu, Z., Fan, C., Yang, X., Li, H., Chen, H. : Low temperature solution processed planar heterojunction perovskite solar cells with CdSe nanocrystal as electron transport/extraction layer. J. Mater. Chem. C 2, 9087 (2014) https://doi.org/10.1039/C4TC01875C
  8. Chiang, C.-H., Tseng, Z.-L., Wu, C.-G. : Planar heterojunction $perovskite/PC_{71}$ BM solar cells with enhanced open-circuit voltage via a (2/1)-Step spin-coating process. J. Mater. Chem. A 2, 15897 (2014) https://doi.org/10.1039/C4TA03674C
  9. Shin, G.S., Choi, W.-G., Na, S., Gokdemir, F.P., Moon, T. : Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155 (2018) https://doi.org/10.1007/s13391-018-0042-1
  10. Shin, G.S., Choi, W.-G., Na, S., Ryu, S.O., Moon, T. : Rapid crystallization in ambient air for planar heterojunction perovskite solar cells. Electron. Mater. Lett. 13, 72 (2017) https://doi.org/10.1007/s13391-017-6239-x
  11. Peng, H., Sun, W., Li, Y., Yan, W., Yu, P., Zhou, H., Bian, Z., Huang, C. : High-performance cadmium sulphide-based planar perovskite solar cell and the cadmium sulphide/perovskite interfaces. J. Photonics Energy 6, 022002 (2016) https://doi.org/10.1117/1.JPE.6.022002
  12. Wang, J., Liu, L., Liu, S., Yang, L., Zhang, B., Feng, S., Yang, J., Meng, X., Fu, W., Yang, H. : Influence of a compact Cds layer on the photovoltaic performance of perovskite-based solar cells. Sustain. Energy Fuels 1, 504 (2017) https://doi.org/10.1039/C6SE00070C
  13. Hwang, I., Yong, K. : Novel CdS hole-blocking layer for photostable perovskite solar cells. ACS Appl. Mater. Interfaces. 8, 4226 (2016) https://doi.org/10.1021/acsami.5b12336
  14. Liu, J., Gao, C., Luo, L., Ye, Q., He, X., Ouyang, L., Guo, X., Zhuang, D., Liao, C., Mei, J., Lau, W. : Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J. Mater. Chem. A 3, 11750 (2015) https://doi.org/10.1039/C5TA01200G
  15. Gu, Z., Chen, F., Zhang, X., Liu, Y., Fan, C., Wu, G., Li, H., Chen, H. : Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Sol. Energy Mater. Sol. Cells 140, 396 (2015) https://doi.org/10.1016/j.solmat.2015.04.015
  16. Juarez-Perez, E.J., Wussler, M., Fabregat-Santiago, F., Lakus-Wollny, K., Mankel, E., Mayer, T., Jaegermann, W., Mora-Sero, I. : Role of the selective contacts in the performance of lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 680 (2014) https://doi.org/10.1021/jz500059v
  17. Wang, J.T.-W., Ball, J.M., Barea, E.M., Abate, A., Alexander-Webber, J.A., Huang, J., Saliba, M., Mora-Sero, I., Bisquert, J., Snaith, H.J., Nicholas, R.J. : Low-temperature processed electron collection layers of graphene/$TiO_2$ nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724 (2014) https://doi.org/10.1021/nl403997a
  18. Han, G.S., Song, Y.H., Jin, Y.U., Lee, J.-W., Park, N.-G., Kang, B.K., Lee, J.-K., Cho, I.S., Yoon, D.H., Jung, H.S. : Reduced graphene oxide/mesoporous $TiO_2$ nanocomposite based perovskite solar cells. ACS Appl. Mater. Interfaces 7, 23521 (2015) https://doi.org/10.1021/acsami.5b06171
  19. Salas-Villasenor, A.L., Mejia, I., Sotelo-Lerma, M., Gnade, B.E., Quevedo-Lopez, M.A. : Performance and stability of solution-based cadmium sulfide thin film transistors: role of CdS cluster size and film composition. Appl. Phys. Lett. 101, 262103 (2012) https://doi.org/10.1063/1.4773184
  20. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J. : Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012) https://doi.org/10.1126/science.1228604
  21. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M. : Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316 (2013) https://doi.org/10.1038/nature12340
  22. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Gratzel, M., Park, N.-G. : Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012) https://doi.org/10.1038/srep00591
  23. Shi, J., Luo, Y., Wei, H., Luo, J., Dong, J., Lv, S., Xiao, J., Xu, Y., Zhu, L., Xu, X., Wu, H., Li, D., Meng, Q. : Modified two-step deposition method for high-efficiency $TiO_2$ /$CH_3NH_3PbI_3$ heterojunction solar cells. ACS Appl. Mater. Interfaces. 6, 9711 (2014) https://doi.org/10.1021/am502131t
  24. Liu, M., Johnston, M.B., Snaith, H.J. : Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395 (2013) https://doi.org/10.1038/nature12509
  25. Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.-L., Mohite, A.D. : High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522 (2015) https://doi.org/10.1126/science.aaa0472
  26. Stranks, S.D., Nayak, P.K., Zhang, W., Stergiopoulos, T., Snaith, H.J. : Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. Angew. Chem. Int. Ed. 54, 2 (2015) https://doi.org/10.1002/anie.201410932
  27. Gao, P., Gratzel, M., Nazeeruddin, M.K. : Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448 (2014) https://doi.org/10.1039/C4EE00942H
  28. Longo, G., Gil-Escrig, L., Degen, M.J., Sessolo, M., Bolink, H.J. : Perovskite solar cells prepared by flash evaporation. Chem. Commun. 51, 7376 (2015) https://doi.org/10.1039/C5CC01103E
  29. Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Penga, W., Han, L. : Retarding the crystallization of $PbI_2$for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934 (2014) https://doi.org/10.1039/C4EE01624F
  30. Zhang, T., Yang, M., Zhao, Y., Zhu, K. : Controllable sequential deposition of planar $CH_3NH_3PbI_3$ perovskite films via adjustable volume expansion. Nano Lett. 15, 3959 (2015) https://doi.org/10.1021/acs.nanolett.5b00843
  31. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I. : Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897 (2014) https://doi.org/10.1038/nmat4014
  32. Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G. : Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137, 8696 (2015) https://doi.org/10.1021/jacs.5b04930
  33. Li, W., Fan, J., Li, J., Mai, Y., Wang, L. : Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137, 10399 (2015) https://doi.org/10.1021/jacs.5b06444
  34. Jo, Y., Oh, K.S., Kim, M., Kim, K.-H., Lee, H., Lee, C.-W., Kim, D.S. : High performance of planar perovskite solar cells produced from $PbI_2$(DMSO) and $PbI_2$(NMP) complexes by intramolecular exchange. Adv. Mater. Interfaces 3, 1500768 (2016) https://doi.org/10.1002/admi.201500768
  35. Zhang, H., Mao, J., He, H., Zhang, D., Zhu, H.L., Xie, F., Wong, K.S., Gratzel, M., Choy, W.C.H. : A smooth $CH_3NH_3PbI_3$ film via a new approach for forming the $PbI_2$nanostructure together with strategically high $CH_3NH_3I$ concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5, 1501354 (2015) https://doi.org/10.1002/aenm.201501354
  36. Zhang, H., Cheng, J., Li, D., Lin, F., Mao, J., Liang, C., Jen, A.K.-Y., Gratzel, M., Choy, W.C.H. : Toward all room-temperature, solution-processed, high-performance planar perovskite solar cells: a new scheme of pyridine-promoted perovskite formation. Adv. Mater. 29, 1604695 (2017) https://doi.org/10.1002/adma.201604695
  37. Hwang, K., Jung, Y.-S., Heo, Y.-J., Scholes, F.H., Watkins, S.E., Subbiah, J., Jones, D.J., Kim, D.-Y., Vak, D. : Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241 (2015) https://doi.org/10.1002/adma.201404598
  38. Wu, N., Shi, C., Ying, C., Zhang, J., Wang, M. : Pbicl: a new precursor solution for efficient planar perovskite solar cell by vaporassisted solution process. Appl. Surf. Sci. 357, 2372 (2015) https://doi.org/10.1016/j.apsusc.2015.09.254
  39. Zhao, Y., Zhu, K. : $CH_3NH_3Cl$-assisted one-step solution growth of $CH_3NH_3PbI_3$ : structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412 (2014) https://doi.org/10.1021/jp502696w
  40. Mosconi, E., Ronca, E., Angelis, F.D. : First-principles investigation of the $TiO_2$ /organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619 (2014) https://doi.org/10.1021/jz501127k
  41. Salas-Villasenor, A.L., Mejia, I., Sotelo-Lerma, M., Guo, Z.B., Alshareef, H.N., Quevedo-Lopez, M.A. : Improved electrical stability of CdS thin film transistors through hydrogen-based thermal treatments. Semicond. Sci. Technol. 29, 085001 (2014) https://doi.org/10.1088/0268-1242/29/8/085001
  42. Wang, M., Shi, C., Zhang, J., Wu, N., Ying, C. : Influence of $PbI_2$ content in $PbI_2$solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells. J. Solid State Chem. 231, 20 (2015) https://doi.org/10.1016/j.jssc.2015.08.002
  43. Brixner, P.A.L.H., Chen, H.-Y., Foris, C.M. : X-ray study of the $PbCl_{2-x}I_x$ and $PbBr_{2-x}I_x $systems. J. Solid State Chem. 40, 336 (1981) https://doi.org/10.1016/0022-4596(81)90400-X
  44. Baltog, I., Baibarac, M., Lefrant, S. : Quantum well effect in bulk $PbI_2$crystals revealed by the anisotropy of photoluminescence and raman spectra. J. Phys. : Condens. Matter 21, 025507 (2009) https://doi.org/10.1088/0953-8984/21/2/025507
  45. Fan, L., Ding, Y., Luo, J., Shi, B., Yao, X., Wei, C., Zhang, D., Wang, G., Sheng, Y., Chen, Y., Hagfeldt, A., Zhao, Y., Zhang, X. : Elucidating the role of chlorine in perovskite solar cells. J. Mater. Chem. A 5, 7423 (2017) https://doi.org/10.1039/C7TA00973A
  46. Behrisch, R., Grigull, S., Kreissig, U., Grotzschel, R. : Influence of surface roughness on measuring depth profiles and the total amount of implanted ions by RBS and ERDA. Nucl. Instrum. Methods Phys. Res. B 136-138, 628 (1998) https://doi.org/10.1016/S0168-583X(97)00798-2
  47. Simon, A., Paszti, F., Uzonyi, I., Manuaba, A., Kiss, A.Z., Rajta, I. : Observation of surface topography using an RBS microbeam. Nucl. Instrum. Methods Phys. Res. B 136-138, 344 (1998) https://doi.org/10.1016/S0168-583X(97)00704-0
  48. Zolnai, Z., Nagy, N., Deak, A., Battistig, G. : Three-dimensional view of the shape, size, and atomic composition of ordered nano-structures by Rutherford backscattering spectrometry. Phys. Rev. B 83, 233302 (2011) https://doi.org/10.1103/PhysRevB.83.233302
  49. Krupinski, M., Perzanowski, M., Zarzycki, Y., Marszalek, M. : Influence of surface topography on RBS measurements: case studies of (Cu/Fe/Pd) multilayers and FePdCu alloys nanopatterned by self-assembly. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 015004 (2017) https://doi.org/10.1088/2043-6254/aa594e
  50. Xu, F., Zhang, T., Li, G., Zhao, Y. : Synergetic effect of chloride doping and $CH_3 NH_3PbCl_3 on $CH_3NH_3PbI_{3-x}Cl_x$ perovskite-based solar cells. Chemsuschem 10, 2365 (2017) https://doi.org/10.1002/cssc.201700487
  51. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R. : Mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613 (2013) https://doi.org/10.1021/cm402919x
  52. Maculan, G., Sheikh, A.D., Abdelhady, A.L., Saidaminov, M.I., Haque, M.A., Murali, B., Alarousu, E., Mohammed, O.F., Wu, T., Bakr, O.M. : $CH_3NH_3PbCl_3$ single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 6, 3781 (2015) https://doi.org/10.1021/acs.jpclett.5b01666
  53. Baena, J.-P.C., Anaya, M., Lozano, G., Tress, W., Domanski, K., Saliba, M., Matsui, T., Jacobsson, T.J., Calvo, M.E., Abate, A., Gratzel, M., Miguez, H., Hagfeldt, A. : Unbroken perovskite: interplay of morphology, electro-optical properties, and ionic movement. Adv. Mater. 28, 5031 (2016) https://doi.org/10.1002/adma.201600624
  54. Hadadian, M., Baena, J.-P.C., Goharshadi, E.K., Ummedisingu, A., Seo, J.-Y., Luo, J., Gholipour, S., Saliba, M., Abate, A., Gratzel, M., Hagfeldt, A. : Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv. Mater. 28, 8681 (2016) https://doi.org/10.1002/adma.201602785

Cited by

  1. Controlled pH of PEDOT:PSS for Reproducible Efficiency in Inverted Perovskite Solar Cells: Independent of Active Area and Humidity vol.7, pp.9, 2018, https://doi.org/10.1021/acssuschemeng.8b06619
  2. Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells vol.15, pp.5, 2018, https://doi.org/10.1007/s13391-019-00163-6
  3. Quasi-2D halide perovskites for resistive switching devices with ON/OFF ratios above 109 vol.12, pp.1, 2018, https://doi.org/10.1038/s41427-020-0202-2