DOI QR코드

DOI QR Code

Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds

  • Received : 2018.03.19
  • Accepted : 2018.05.02
  • Published : 2018.11.10

Abstract

Nanostructured Ni doped $Bi_2S_3$ ($Bi_{2-x}Ni_xS_3$, $0{\leq}x{\leq}0.07$) is explored as a candidate for telluride free thermoelectric material, through a combination process of mechanical alloying with subsequent consolidation by cold pressing followed with a sintering process. The cold pressing method was found to impact the thermoelectric properties in two ways: (1) introduction of the dopant atom in the interstitial sites of the crystal lattice which results in an increase in carrier concentration, and (2) introduction of a porous structure which reduces the thermal conductivity. The electrical resistivity of $Bi_2S_3$ was decreased by adding Ni atoms, which shows a minimum value of $2.35{\times}10^{-3}{\Omega}m$ at $300^{\circ}C$ for $Bi_{1.99}Ni_{0.01}S_3$ sample. The presence of porous structures gives a significant effect on reduction of thermal conductivity, by a reduction of ~ 59.6% compared to a high density $Bi_2S_3$. The thermal conductivity of $Bi_{2-x}Ni_xS_3$ ranges from 0.31 to 0.52 W/m K in the temperature range of $27^{\circ}C$ (RT) to $300^{\circ}C$ with the lowest ${\kappa}$ values of $Bi_2S_3$ compared to the previous works. A maximum ZT value of 0.13 at $300^{\circ}C$ was achieved for $Bi_{1.99}Ni_{0.01}S_3$ sample, which is about 2.6 times higher than (0.05) of $Bi_2S_3$ sample. This work show an optimization pathway to improve thermoelectric performance of $Bi_2S_3$ through Ni doping and introduction of porosity.

Keywords

Acknowledgement

Supported by : University of Malaya

References

  1. Bell, L.E. : Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (5895), 1457-1461 (2008) https://doi.org/10.1126/science.1158899
  2. Sanz-Bobi, M.A., Palacios, R., Aguilera, A. : Potential use of small waste heat sources based on thermoelectricity: application to an overhead projector and a battery charger. In: Proceedings of 5th ETS, pp. 58-65 (1999)
  3. Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A., Elsheikh, M.H. : Recent advances on $Mg_2Si_{1-x}Sn_x$ materials for thermoelectric generation. Renew. Sustain. Energy Rev. 37, 569-584 (2014) https://doi.org/10.1016/j.rser.2014.05.060
  4. Ovik, R., Long, B.D., Barma, M.C., Riaz, M., Sabri, M.F.M., Said, S.M., Saidur, R. : A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renew. Sustain. Energy Rev. 64, 635-659 (2016) https://doi.org/10.1016/j.rser.2016.06.035
  5. Snyder, G.J., Toberer, E.S. : Complex thermoelectric materials. Nat. Mater. 7(2), 105-114 (2008) https://doi.org/10.1038/nmat2090
  6. Visnow, E., Heinrich, C.P., Schmitz, A., de Boor, J., Leidich, P., Klobes, B., Hermann, R.P., Muller, W.E., Tremel, W. : On the true indium content of In-filled skutterudites. Inorg. Chem. 54(16), 7818-7827 (2015) https://doi.org/10.1021/acs.inorgchem.5b00799
  7. Yang, J., Stabler, F.R. : Automotive applications of thermoelectric materials. J. Electron. Mater. 38(7), 1245-1251 (2009) https://doi.org/10.1007/s11664-009-0680-z
  8. Rowe, D.M. : Thermoelectrics Handbook: Macro to Nano. CRC Press, Boca Raton (2005)
  9. Rowe, D.M., Bhandari, C.M. : Modern Thermoelectrics. Prentice Hall, Upper Saddle River (1983)
  10. Amatya, R., Ram, R.J. : Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 41(6), 1011-1019 (2012) https://doi.org/10.1007/s11664-011-1839-y
  11. Chen, K. : Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds. Queen Mary University of London, United Kingdom (2016)
  12. Mizoguchi, H., Hosono, H., Ueda, N., Kawazoe, H. : Preparation and electrical properties of $Bi_2S_3$ whiskers. J. Appl. Phys. 78(2), 1376-1378 (1995) https://doi.org/10.1063/1.360315
  13. Zhao, L.D., Zhang, B.P., Liu, W.S., Zhang, H.L., Li, J.F. : Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 181(12), 3278-3282 (2008) https://doi.org/10.1016/j.jssc.2008.08.022
  14. Ge, Z.H., Zhang, B.P., Yu, Z.X., Li, J.F. : Effect of spark plasma sintering temperature on thermoelectric properties of $Bi_2S_3$ polycrystal. J. Mater. Res. 26(21), 2711-2718 (2011) https://doi.org/10.1557/jmr.2011.273
  15. Yu, Y.Q., Zhang, B.P., Ge, Z.H., Shang, P.P., Chen, Y.X. : Thermoelectric properties of Ag-doped bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. Mater. Chem. Phys. 131(1), 216-222 (2011) https://doi.org/10.1016/j.matchemphys.2011.09.010
  16. Ge, Z.H., Zhang, B.P., Liu, Y., Li, J.F. : Nanostructured $Bi_{2-x}Cu_xS_3$ bulk materials with enhanced thermoelectric performance. Phys. Chem. Chem. Phys. 14(13), 4475-4481 (2012) https://doi.org/10.1039/c2cp23955h
  17. Kawamoto, Y., Iwasaki, H. : Thermoelectric properties of $(Bi_{1-x}Sb_x)_2S_3$ with orthorhombics structure. J. Electron. Mater. 43(6), 1475-1479 (2014) https://doi.org/10.1007/s11664-013-2742-5
  18. Zhang, L.J., Zhang, B.P., Ge, Z.H., Han, C.G. : Fabrication and properties of $Bi_2S_{3-x}Se_x$ thermoelectric polycrystals. Solid State Commun. 162, 48-52 (2013) https://doi.org/10.1016/j.ssc.2013.03.013
  19. Sterzel, H.J. : Patent, in WO2006/089938A1 (2006)
  20. Du, X., Shi, R., Ma, Y., Cai, F., Wang, X., Yuan, Z. : Enhanced thermoelectric performance of n-type $Bi_2S_3$ with added ZnO for power generation. RSC Adv. 5(39), 31004-31009 (2015) https://doi.org/10.1039/C5RA01071C
  21. Biswas, K., Zhao, L.D., Kanatzidis, M.G. : Tellurium-free thermoelectric: the anisotropic n-type semiconductor $Bi_2S_3$. Adv. Energy Mater. 2(6), 634-638 (2012) https://doi.org/10.1002/aenm.201100775
  22. Du, X., Cai, F., Wang, X. : Enhanced thermoelectric performance of chloride doped bismuth sulfide prepared by mechanical alloying and spark plasma sintering. J. Alloy. Compd. 587, 6-9 (2014) https://doi.org/10.1016/j.jallcom.2013.10.185
  23. Ge, Z.H., Qin, P., He, D.S., Chong, X., Feng, D., Ji, Y.H., Feng, J., He, J. : Highly enhanced thermoelectric properties of $Bi/Bi_2S_3$ nanocomposites. ACS Appl. Mater. Interfaces 9(5), 4828-4834 (2017) https://doi.org/10.1021/acsami.6b14803
  24. Janghorban, K., Kirkaldy, J.S., Weatherly, G.C. : The Hume-Rothery size rule and double-well microstructures in gold-nickel. J. Phys. Condens. Matter 13(38), 8661 (2001) https://doi.org/10.1088/0953-8984/13/38/309
  25. Chen, Z.G., Han, G., Yang, L., Cheng, L., Zou, J. : Nanostructured thermoelectric materials: current research and future challenge. Progress Nat. Sci. Mater. Int. 22(6), 535-549 (2012) https://doi.org/10.1016/j.pnsc.2012.11.011
  26. Szczech, J.R., Higgins, J.M., Jin, S. : Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21(12), 4037-4055 (2011) https://doi.org/10.1039/C0JM02755C
  27. Jung, S.J., Kim, J.H., Kim, D.I., Kim, S.K., Park, H.H., Kim, J.S., Hyun, D.B., Baek, S.H. : Strain-assisted, low-temperature synthesis of high-performance thermoelectric materials. Phys. Chem. Chem. Phys. 16(8), 3529-3533 (2014) https://doi.org/10.1039/c3cp54969k
  28. Zhang, Q., Zhang, Q., Chen, S., Liu, W., Lukas, K., Yan, X., Wang, H., Wang, D., Opeil, C., Chen, G., Ren, Z. : Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano Energy 1(1), 183-189 (2012) https://doi.org/10.1016/j.nanoen.2011.10.006
  29. Petricek, V., Dusek, M., Palatinus, L. : Crystallographic computing system JANA2006: general features. Zeitschrift fur Kristallographie-Crystalline Materials 229, 345-352 (2014)
  30. Vegard, L. : Die konstitution der mischkristalle und die raumfullung der atome. Zeitschrift fur Physik 5(1), 17-26 (1921) https://doi.org/10.1007/BF01349680
  31. Pearson, G.L., Bardeen, J. : Electrical properties of pure silicon and silicon alloys containing boron and phosphorus. Phys. Rev. 75(5), 865 (1949) https://doi.org/10.1103/PhysRev.75.865
  32. Ge, Z.H., Zhang, B.P., Yu, Y.Q., Shang, P.P. : Fabrication and properties of $Bi_{2-x}Ag_{3x}S_3$ thermoelectric polycrystals. J. Alloy. Compd. 514, 205-209 (2012) https://doi.org/10.1016/j.jallcom.2011.11.072
  33. Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., Chen, G. : Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107(9), 094308 (2010) https://doi.org/10.1063/1.3388076
  34. Du, Z., Zhu, T., Chen, Y., He, J., Gao, H., Jiang, G., Tritt, T.M., Zhao, X. : Roles of interstitial Mg in improving thermoelectric properties of Sb-doped $Mg_2Si_0.4}Sn_{0.6}$ solid solutions. J. Mater. Chem. 22(14), 6838-6844 (2012) https://doi.org/10.1039/c2jm16694a
  35. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R. : Nanoscale thermal transport. J. Appl. Phys. 93(2), 793-818 (2003) https://doi.org/10.1063/1.1524305
  36. Goldsmid, H.J., Penn, A.W. : Boundary scattering of phonons in solid solutions. Phys. Lett. A 27(8), 523-524 (1968) https://doi.org/10.1016/0375-9601(68)90898-0