DOI QR코드

DOI QR Code

Gas Permeation Properties of PEO/EVA/MWCNT Composite Membranes

PEO/EVA/MWCNT 복합막을 통한 기체투과 성질

  • Kang, Min Ji (Department of Industrial Chemistry, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Education Studies, Sangmyung University)
  • 강민지 (상명대학교 공업화학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2018.04.24
  • Accepted : 2018.06.28
  • Published : 2018.10.10

Abstract

In this study, polyethylene oxide (PEO)/polyethylene-co-vinyl acetate (EVA)/multi-walled carbon nanotube (MWCNT)-COOH composite membranes were prepared by adding 1, 2, 3, and 5 wt% of MWCNT-COOH to PEO/EVA respectively. The gas permeation properties of $N_2$, $O_2$ and $CO_2$ at $30^{\circ}C$ and 4~8 bar pressure were investigated. In each PEO/EVA/MWCNT-COOH composite membranes, the permeability of $CO_2$ increased with increasing the pressure, but the permeability of $N_2$ and $O_2$ were independent of the feeding pressure. As the MWCNT-COOH content increased, the $CO_2$ permeability increased and then decreased above 2 wt% MWCNT-COOH content. The 2 wt% MWCNT-COOH composite membrane exhibited a $CO_2/N_2$ selectivity of 77.8 and a $CO_2$ permeability of 84 barrer at 8 bar. The high $CO_2/N_2$ selectivity and $CO_2$ permeability were due to the high affinity between the quadrupolar $CO_2$, polar ether groups of PEO, and the polar ester groups of EVA. Additionally, the strong affinity between $CO_2$ and the -COOH groups on the MWCNT surface contributed to the high permeability of $CO_2$.

본 연구에서는 PEO [poly(ethylene oxide)]/EVA [poly(ethylene-co-vinyl acetate)]에 MWCNT (multi-walled carbon nanotube)-COOH 1, 2, 3, 5 wt% 첨가하여 PEO/EVA/MWCNT-COOH 복합막을 제조하였다. 그리고 복합막에 대해 $30^{\circ}C$, 4~8 bar의 압력에서 $N_2$, $O_2$, $CO_2$의 기체투과 성질을 조사하였다. 각 PEO/EVA/MWCNT-COOH 복합막들에서 $CO_2$의 투과도는 압력 증가에 따라 증가하였고, $N_2$$O_2$는 압력에 거의 변화를 받지 않았다. 그리고 MWCNT-COOH 함량이 증가하면서 $CO_2$ 투과도가 증가하다가 2 wt% MWCNT-COOH 함량이상에서 감소하였는데 2 wt% MWCNT-COOH 복합막은 8 bar에서 $CO_2/N_2$ 선택도 77.8과 $CO_2$ 투과도 84 barrer를 나타내었다. 높은 $CO_2/N_2$ 선택도와 $CO_2$ 투과도는 사극자 $CO_2$와 PEO 내의 극성 에테르기, EVA의 극성 에스터기와 함께 MWCNT 표면의 -COOH기 간의 높은 친화력 때문이다.

Keywords

References

  1. C. A. Scholes, K. H. Smith, S. E. Kentish, and G. W. Stevens, $CO_2$ capture from pre-combustion processes-strategies for membrane gas separation, Int. J. Greenhouse Gas Control, 4, 739-755 (2010). https://doi.org/10.1016/j.ijggc.2010.04.001
  2. P. Bernardo, E. Drioli, and G. Golemme, Membrane gas separation: A review/state of the art, Ind. Eng. Chem. Res., 48, 4638-4663 (2009). https://doi.org/10.1021/ie8019032
  3. A. W. Grabczyk, P. Kubica, and A. Jankowski, Effect of the acetate group content on gas permeation through membranes based on poly(ethylene-co-vinyl acetate) and its blends, J. Membr. Sci., 443, 227-236 (2013). https://doi.org/10.1016/j.memsci.2013.04.057
  4. R. W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41, 1393-1411 (2002). https://doi.org/10.1021/ie0108088
  5. B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 32, 375-380 (1999). https://doi.org/10.1021/ma9814548
  6. 5. Y. Shen and A. C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler( fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chem. Eng. J., 192, 201-210 (2012). https://doi.org/10.1016/j.cej.2012.03.066
  7. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  8. A. F. Ismail, N. H. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes, Sep. Purif. Technol., 80, 20-31 (2011). https://doi.org/10.1016/j.seppur.2011.03.031
  9. M. Nour, K. Berean, S. Balendhran, J. Z. Ou, J. D. Pessis, C. McSweeney, M. Bhaskaran, S. Sriram, and K. K. Zadeh, CNT/PDMS composite membranes for $H_2$ and $CH_4$ gas separation, Int. J. Hydrogen Energy, 38, 10494-10501 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.162
  10. K. W. Park and G. H. Kim, Ethylene vinyl acetate copolymer (EVA)/multiwalled carbon nanotube (MWCNT) nanocomposite foams, J. Appl. Polym. Sci., 112, 1845-1849 (2009). https://doi.org/10.1002/app.29736
  11. H. Cong, J. Zhang, M. Radosz, and Y. Shen, Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation, J. Membr. Sci., 294, 178-185 (2007). https://doi.org/10.1016/j.memsci.2007.02.035
  12. M. A. Aroon, A. F. Ismail, M. M. M. Rahmati, and T. Matsuura, Effect of chitosan as a functionalization agent on the performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes, J. Membr. Sci., 364, 309-317 (2010). https://doi.org/10.1016/j.memsci.2010.08.023
  13. A. F. Ismail, N. H. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, Gas separation performance of plyethersulfone/multi-walled carbon nanotubes mixed matrix membranes, Sep. Purif. Technol., 80, 20-31 (2011). https://doi.org/10.1016/j.seppur.2011.03.031
  14. R. S. Murali, S. Sridhar, T. Sankarshana, and Y. V. L. Ravikumar, Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes, Ind. Eng. Chem. Res., 49, 6530-6538 (2010). https://doi.org/10.1021/ie9016495
  15. S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, and Z. Jiang, Pebax-PEG-MWCNT hybrid membranes with enhanced $CO_2$ capture properties, J. Membr. Sci., 460, 62-70 (2014). https://doi.org/10.1016/j.memsci.2014.02.036
  16. C. H. Hong, D. S. Han, and B. U. Nam, Synthesis of multi-walled Carbon nanotube/poly(ethylene oxide) hybrids, Polymer (Korea), 34, 198-201 (2010). https://doi.org/10.7317/pk.2010.34.3.198
  17. L. Ge, Z. Zhu, and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Sep. Purif. Technol., 78, 76-82 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  18. H. W. Yoon, H. D. Lee, and H. B. Park, Gas transport behavior of modified carbon nanotubes/hydrogel composite membranes, Membr. J., 23(5), 375-383 (2013).
  19. F. Aviles, J. V. C. Rodriguez, L. M. Tah, A. M. Pat, and R. V. Coronado, Evaluation of mild acid oxidation treatments for MWCNT functionalization, Carbon, 47, 2970-2975 (2009). https://doi.org/10.1016/j.carbon.2009.06.044
  20. S. A. Mousavi, M. Sadeghi, M. M. Y. M. Hashemi, M. P. Chenar, R. R. Azad, and M. Sadeghi, Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method, Sep. Purif. Technol., 62, 642-647 (2008). https://doi.org/10.1016/j.seppur.2008.02.030
  21. H. Lin and B. D. Freeman, Gas solubility, diffusivity and permeability in poly(ethylene oxide), J. Membr. Sci., 239, 105-117 (2004). https://doi.org/10.1016/j.memsci.2003.08.031
  22. B. K. Seo, J. H. Kim, H. S. Ahn, B. J. Chang, and K. H. Lee, The state of art of membrane technology for separation of carbon dioxide from flue gas, Korea Ind. Chem. (KIC) News, 14, 1 (2011).
  23. H. Lin and B. D. Freeman, Materials selection guidelines for membranes that remove $CO_2$ from gas mixtures, J. Mol. Struct., 739, 57-74 (2005). https://doi.org/10.1016/j.molstruc.2004.07.045
  24. K. Okamoto, N. Umeo, S. Okamyo, K. Tanaka, and H. Kita, Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes, Chem. Lett., 22, 225-228 (1993). https://doi.org/10.1246/cl.1993.225
  25. K. Okamoto, M. Fujii, S. Okamyo, H. Suzuki, K. Tanaka, and H. Kita, Gas permeation properties of poly(ether imide) segmented copolymers, Macromolecules, 28, 6950-6956 (1995). https://doi.org/10.1021/ma00124a035
  26. Y. J. Shur and B. Ranby, Gas permeation of polymer blends. I. PVC/Ethylene-vinyl acetate copolymer (EVA), J. Appl. Polym. Sci., 19, 1337-1346 (1975). https://doi.org/10.1002/app.1975.070190513
  27. H. K. Lee and M. J. Kang, Gas separation properties of poly(ethylene oxide) and poly(ethylene-co-vinyl acetate) blended membranes, Membr. J., 27(2), 147-153 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.147
  28. S. Cimmino, E. Martuscelli, M. Saviano, and C. Silvestre, Miscibility of poly(ethylene oxide)/poly(ethylene-co-vinyl acetate) blends: simulation of phase diagram, Polymer, 32, 1461-1467 (1991). https://doi.org/10.1016/0032-3861(91)90427-K
  29. F. T. Simon and J. M. Rutherford, Crystallization and melting behavior of polyethylene oxide copolymers, J. Appl. Phys., 35, 82-86 (1964). https://doi.org/10.1063/1.1713103
  30. C. K. Yeom, J. M. Lee, Y. T. Hong, K. Y. Choi, and S. C. Kim, Analysis of permeation transients of pure gases through dense polymeric membranes measured by a new permeation apparatus, J. Membr. Sci., 166, 71-83 (2000). https://doi.org/10.1016/S0376-7388(99)00252-5
  31. J. Jin, M. Song, and F. Pan, A DSC study of effect of carbon nanotubes on crystallisation behaviour of poly(ethylene oxide), Thermochim. Acta, 456, 25-31 (2007). https://doi.org/10.1016/j.tca.2007.02.003
  32. M. S. Tehrani, P. A. Azar, P. E. Namin, and S. M. Dehaghi, Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris(2-aminoethyl)amine, J. Environ. Prot., 4, 529-536 (2013). https://doi.org/10.4236/jep.2013.46062
  33. C. Maxwell, Treatise on Electricity and Magnetism, Oxford University Press, London, UK (1873).
  34. R. M. Barrer, J. A. Barrie, and M. G. Rogers, Heterogeneous membranes: diffusion in filled rubber, J. Polym. Sci. A, 1, 2565-2586 (1963).
  35. T. S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci., 32, 483-507 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  36. T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, Effect of nanoparticles on gas sorption and transport in poly(1-trimethyl-1-propyne), Macromolecules, 36, 6844-6855 (2003). https://doi.org/10.1021/ma0341566
  37. S. A. Hashemifard, A. F. Ismail, and T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation, J. Colloid Interface Sci., 359, 359-370 (2011). https://doi.org/10.1016/j.jcis.2011.03.077
  38. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030