참고문헌
- M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
- D. Pavlov, T. Rogachev, P. Nikolov, and G. Petkova, Mechanism of action of electrochemically active carbons on the process that take place at the negative plates of lead-acid batteries, J. Power Sources, 191, 58-75 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.056
- H. Y. Chen, A. J. Li, and D. E. Finlow, The lead and lead-acid battery industries during 2002 and 2007 in China, J. Power Sources, 191, 22-27 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.140
- M. Saravanan, M. Ganesan, and S. Ambalavanan, An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery, J. Power Sources, 251, 20-29 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.143
- P. Baca, K. Micha, P. Krivik, K. Tonar, and P. Toser, Study of the influence of carbon on the negative lead-acid battery electrodes, J. Power Sources, 196, 3988-3992 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.046
- X. Zou, Z. Kang, D. Shu, Y. Liao, Y. Gong, C. He, J. Hao, and Y. Zhong, Effects of carbon additives on the perfomance of negative electrode of lead-carbon battery, Electrochim. Acta, 151, 89-98 (2015). https://doi.org/10.1016/j.electacta.2014.11.027
- L. Wang, H. Zhang, W. Zhang, G. Cao, H. Zhao, and Y. Yang, Enhancing cycle performance of lead-carbon battery anodes by lead-doped porous carbon composite and graphite additives, Mater. Lett., 206, 113-116 (2017). https://doi.org/10.1016/j.matlet.2017.06.120
-
J. Lian, W. Li, F. Wang, J. Yan, K. Wang, S. Cheng, and K. Jiang, Enhanced performance of lead acid batteries with
$Bi_2O_2CO_3$ /activated carbon additives to negative plates, J. Electrochem. Soc., 164, 1726-1730 (2017). https://doi.org/10.1149/2.1561707jes - B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, and Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery, J. Power Sources, 270, 332-341 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.145
- Q. Wang, J. Liu, D. Yang, X. Yuan, L. Li, X. Zhu, W. Zhang, Y. Hu, X. Sun, S. Liang, J. Hu, R. V. Kumar, and J. Yang, Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide, J. Power Sources, 285, 485-492 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.125
-
P. Perret, Z. Khani, T. Brousse, D. Belanger, and D. Guay, Carbon/
$PbO_2$ asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte, Electrochim. Acta, 56, 8122-8128 (2011). https://doi.org/10.1016/j.electacta.2011.05.125 -
J. Wang, W. Zhang, X. Yue, Q. Yang, F. Liu, Y. Wang, D. Zhang, Z. Li, and J. Wang, One-pot synthesis of multifunctional magnetic ferrite-
$MoS_2$ -carbon dot nanohybrid adsorbent for efficient Pb(II) removal, J. Mater. Chem. A, 4, 3893-3900 (2016). https://doi.org/10.1039/C6TA00269B - F. Schuth and W. Schmidt, Microporous and mesoporous materials, Adv. Mater., 14, 629-638 (2002). https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
- L. T. Lam, R. Louey, N. P. Haigh, O. V. Lim, D. G. Vella, C. G. Phyland, L. H. Vu, J. Furukawa, T. Takada, D. Monma, and T. Kano, VRLA Ultrabattery for high-rate partial-state-of-charge operation, J. Power Sources, 174, 16-29 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.047
- M. S. Rahmanifa, Enhancing the cycle life of lead-acid batteries by modifying negative grid surface, Electrochim. Acta, 235, 10-18 (2017). https://doi.org/10.1016/j.electacta.2017.03.057
- P. Krivik, Methods of SoC determination of lead acid battery, J. Energy Storage, 15, 191-195 (2018). https://doi.org/10.1016/j.est.2017.11.013
- Q. Long, G. Ma, Q. Xu, C. Ma, J. Nan, A. Li, and H. Chen, Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition, J. Power Sources, 343, 188-196 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.056
- Y. Liu, P. Pengran, X. Bu, G. Kuang, W. liu, and L. Lei, Nanocrosses of lead sulphate as the negative active material of lead acid batteries, J. Power Sources, 263, 1-6 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.135
- Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys., 13, 17615-17624 (2011). https://doi.org/10.1039/c1cp21910c
- R. Paul, Aging mechanisms and service life of lead-acid batteries, J. Power Sources, 127, 33-44 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.052
- J. W. Hwang and J. D. Lee, Electrochemical characteristics of ultra battery anode material using the nano Pb/AC for ISG, Korean Chem. Eng. Res., 55, 593-599 (2017).