DOI QR코드

DOI QR Code

초음파에너지를 이용한 칡으로부터 이소플라보노이드의 추출공정 최적화

Optimization of Iso-flavonoids Extraction Process from Kudge Using Ultrasonic Irradiation Energy

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Kim, Su In (Department of Chemical Engineering, Dankook University) ;
  • Hong, In Kwon (Department of Chemical Engineering, Dankook University)
  • 투고 : 2018.04.04
  • 심사 : 2018.05.11
  • 발행 : 2018.10.10

초록

본 연구에서는 칡으로부터 항산화 물질을 추출하는 방법으로 초음파 추출공정을 이용하였으며, 칡에 포함된 iso-flavonoids인 puerarin, daidzein, daidzin의 함량을 측정하였다. 본 연구에서는 칡으로부터 iso-flavonoids 추출수율의 최대화를 위한 공정조건의 최적화를 위해 통계학적 분석방법인 반응표면분석법을 적용하였다. 이는 최소한의 실험횟수로 원하는 반응치에 부합하는 공정조건을 효과적으로 도출하고 각 공정조건이 반응치에 미치는 효과도를 분석하는 방법이다. 반응표면분석법 중 중심합성계획모델을 적용하여 최적조건을 분석하였으며, 3개의 독립변수는 초음파 조사시간, 주정/초순수 부피비, 초음파 조사세기로 설정하였다. 반응표면분석법을 이용하여 두 개의 반응치인 추출수율과 iso-flavonoids 함량의 최대값을 갖는 최적조건을 평가한 결과 초음파 조사시간(24.75 min), 주정/초순수 부피비(39.75 vol%), 초음파 조사세기(592.36 W)로 나타났다. 종합 만족도 D는 0.8938로 높게 나타났으며 5% 이내의 유의성 수준에 인정된다. 또한 최적화 과정을 분석한 결과 초음파 조사시간이 반응치에 가장 영향을 많이 미치는 인자임을 확인할 수 있었다.

In this study, we used the ultrasonic extraction process as a method to extract antioxidant substances from kudzu, and measured the content of iso-flavonoids puerarin, daidzein, daidzin contained in kudzu. The response surface methodology which is a statistical analysis method for optimizing the extraction amount of iso-flavonoids from the kudzu and the process condition for maximizing the yield was applied. It is the final objective of this study to effectively derive the condition of the process that matches the target response with a minimum number of experiments and analyze the effect of each process condition on the response. In the response surface methodology, the central composite design was applied and the optimum condition was analyzed, and the three independent variables were set to ultrasonic irradiation time, volume ratio of ethanol/ultrapure water, ultrasonic irradiation power. Using the response surface methodology, the optimum conditions with the maximum extraction yield and the content of iso-flavonoids were evaluated as ultrasonic irradiation time (24.75 min), ethanol / ultrapure water volume ratio (39.75 vol%), ultrasonic irradiation power (592.36 W). The overall satisfaction level appears as high as 0.8938, which is recognized at a significance level within 5%. As a result of analyzing the optimization process, it was confirmed that the ultrasonic irradiation time is the factor that most affects the responses.

키워드

참고문헌

  1. S. Kayano, Y. Matsumura, Y. Kitagawa, M. Kobayashi, A. Nagayama, N. Kawabata, K. Kikuzaki, and Y. Kitada, Isoflavone C-glycosides isolated from the root of kudzu (Pueraria lobata) and their estrogenic activities, Food Chem., 134, 282-287 (2012). https://doi.org/10.1016/j.foodchem.2012.02.137
  2. S.-W. Choi, K.-S. Kim, N.-Y. Hur, S.-C. Ahn, C.-S. Park, B.-Y. Kim, M.-Y. Baik, and D.-O. Kim, Effect of heat processing on thermal stability of kudzu (Pueraria thumbergiana Bentham) root isoflavones, J. Life Sci., 18, 1447-1454 (2008). https://doi.org/10.5352/JLS.2008.18.10.1447
  3. Y. Zhang, J. Chen, C. Zhang, W. Wu, and X. Liang, Analysis of the estrogenic components in kudzu root by bioassay and high performance liquid chromatography, J. Steroid Biochem. Mol. Biol., 94, 375-381 (2005). https://doi.org/10.1016/j.jsbmb.2004.10.022
  4. W. Cherdshewassart, S. Subtang, and W. Dahlan, Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobate, J. Pharm. Biomed. Anal., 43, 428-434 (2007). https://doi.org/10.1016/j.jpba.2006.07.013
  5. P. Delmonte, J. Perry, and J. I. Rader, Determination of isoflavones in dietary supplements containing soy, red clover and kudzu: Extraction followed by basic or acid hydrolysis, J. Chromatogr. A, 1107, 59-69 (2006). https://doi.org/10.1016/j.chroma.2005.11.060
  6. M.-Y. Lee and K.-H. Chang, Quality properties and isoflavone contents of Chungkukjang containing isoflavone extracted from arrowroot (Pueraria lobate Ohwi), J. East Asian Soc. Diet. Life, 20, 543-550 (2010).
  7. F.-Y. Ma, C.-B. Gu, C.-Y. Li, M. Luo, W. Wang, Y.-G. Zu, J. Li, and Y.-J. Fu, Microwave-assisted aqueous two-phase extraction of isoflavonoids from Dalbergia odorifera T. Chen leaves, Sep. Purif. Technol., 115, 136-144 (2013). https://doi.org/10.1016/j.seppur.2013.05.003
  8. H. Xu, Y. Zhang, and C. He, Ultrasonically assisted extraction of isoflavones from stem of Pueraria lobata (Willd.) Ohwi and its mathematical model, Chin. J. Chem. Eng., 15, 861-867 (2007). https://doi.org/10.1016/S1004-9541(08)60015-4
  9. D. Pradal, P. Vauchel, S. Decossin, P. Dhulster, and K. Dimitrov, Integrated extraction- adsorption process for selective recovery of antioxidant phenolics from food industry by- product, Chem. Eng. Process., 127, 83-92 (2018). https://doi.org/10.1016/j.cep.2018.03.016
  10. F. Chen, Q. Zhang, J. Liu, H. Gu, and L. Yang, An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique, Ultrason. Sonochem., 37, 267-278 (2017). https://doi.org/10.1016/j.ultsonch.2017.01.012
  11. R. Mittal, H. A. Tavanandi, V. A. Mantri, and K. S. M. S. Raghavarao, Ultrasound assisted methods for enhanced extraction of phycobiliproteins from marine macro-algae, Gelidium pusillum (Rhodophyta), Ultrason. Sonochem., 38, 92-103 (2017). https://doi.org/10.1016/j.ultsonch.2017.02.030
  12. G. Kumar, Ultrasonic-assisted reactive-extraction is a fast and easy method for biodiesel production from Jatropha curcas oilseeds, Ultrason. Sonochem., 37, 634-639 (2017). https://doi.org/10.1016/j.ultsonch.2017.02.018
  13. L. Bebrevska, K. Foubert, N. Hermans, S. Chatterjee, E. Van Marck, G. De Meyer, A. Vlietinck, L. Pieters, and S. Apers, In vivo antioxidative activity of a quantified Pueraria lobata root extract, J. Ethnopharmacol., 127, 112-117 (2010). https://doi.org/10.1016/j.jep.2009.09.039
  14. K. A. Kang, S. Chae, Y. S. Koh, J. S. Kim, J. H. Lee, and J. W. Hyun, Protective effect of puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin, Biol. Pharm. Bull, 28, 1154-1160 (2005). https://doi.org/10.1248/bpb.28.1154
  15. Y. Gao, X. Wang, and C. He, An isoflavonoid-enriched extract from Pueraria lobate (kudzu) root protects human umbilical vein endothelial cells against oxidative stress induced apoptosis, J. Ethnopharmacol., 193, 524-530 (2016). https://doi.org/10.1016/j.jep.2016.10.005
  16. P. Wang, H. Zhang, H. Yang, L. Nie, and H. Zang, Rapid determination of major bioactive isoflavonoid compounds during the extraction process of kudzu (Pueraria lobate) by near-infrared transmission spectroscopy, Spectrochim. Acta A, 137, 1403-1408 (2015). https://doi.org/10.1016/j.saa.2014.09.002
  17. K. Beekmann, L. H. J. de Haan, L. Actis-Goretta, R. Houtman, P. J. van Bladeren, and I. M. C. M. Rietjens, The effect of glucuronidation on isoflavone induced estrogen receptor (ER) and ER mediated coregulator interactions, J. Steroid Biochem. Mol. Biol., 154, 245-253 (2015). https://doi.org/10.1016/j.jsbmb.2015.09.002
  18. C.-Y. Chiao, H.-J. Kwon, J.-S. Jeong, J.-H. Lee, and S.-P. Hong, Determination method of Puerarin and Daidzin from Puerariae Radix by reversed-phase HPLC with pulsed amperometric detection, Korean J. Herbology, 23, 171-177 (2008).
  19. Y. Zhang, Z. Liu, Y. Li, and R. Chi, Optimization of ionic liquid-based microwave-assisted extraction of isoflavones from Radix puerariae by response surface methodology, Sep. Purif. Technol., 129, 71-79 (2014). https://doi.org/10.1016/j.seppur.2014.03.022
  20. P. li, L. Zhou, Y. Mou, and Z. Mao, Extraction optimization of polysaccharide from Zanthoxylum bungeanum using RSM and its antioxidant activity, Int. J. Biol. Macromol., 72, 19-27 (2015). https://doi.org/10.1016/j.ijbiomac.2014.07.057
  21. K. H. Wong, G. Q. Li, K. M. Li, V. Razmovski-Naumovski, and K. Chan, Optimisation of Pueraria isoflavonoids by response surface methodology using ultrasonic-assisted extraction, Food Chem., 231, 231-237 (2017). https://doi.org/10.1016/j.foodchem.2017.03.068
  22. C. Chen, Y. Shao, Y. Tao, and H. Wen, Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity, LWT-Food Sci. Technol., 64, 1263-1269 (2015). https://doi.org/10.1016/j.lwt.2015.07.009
  23. X. Yin, Q. You, and Z. Jiang, Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology, Carbohydr. Polym., 86, 1358-1364 (2011). https://doi.org/10.1016/j.carbpol.2011.06.053
  24. K. Ameer, S.-W. Bae, Y. Jo, H.-G. Lee, A. Ameer, and J.-H. Kwon, Optimization of microwave-assisted extraction of total extract stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling, Food Chem., 229, 198-207 (2017). https://doi.org/10.1016/j.foodchem.2017.01.121
  25. J. Sharma, Sukriti, P. Anand, V. Pruthi, A. S. Chaddha, J. Bhatia, and B. S. Kaith, RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies, Mater. Chem. Phys., 196, 270-283 (2017). https://doi.org/10.1016/j.matchemphys.2017.04.042
  26. Y. H. Tan, M. O. Abdullah, and C. Nolasco-Hipolito, Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renew. Energy, 114, 437-447 (2017). https://doi.org/10.1016/j.renene.2017.07.024
  27. M. Yolmeh, M. B. Habibi Najafi, and R. Farhoosh, Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM), Food Chem., 155, 319-324 (2014). https://doi.org/10.1016/j.foodchem.2014.01.059
  28. T. Wang, H. Liang, and Q. Yuan, Optimization of ultrasonic-stimulated solvent extraction of sinigrin from Indian mustard seed (Brassica juncea L.) using response surface methodology, Phytochem. Anal., 22, 205-213 (2011). https://doi.org/10.1002/pca.1266
  29. T. Belwal, P. Dhyani, I. D. Bhatt, R. S. Rawal, and V. Pande, Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM), Food Chem., 207, 115-124 (2016). https://doi.org/10.1016/j.foodchem.2016.03.081
  30. A. Singh, H. Garg, and A. K. Lall, Optical polishing process: Analysis and optimization using response surface methodology (RSM) for large diameter fused silica flat substrates, J. Manuf. Process., 30, 439-451 (2017). https://doi.org/10.1016/j.jmapro.2017.10.017