DOI QR코드

DOI QR Code

The Developing Trend in Bioresorbable Stent for Treatment of Coronary Artery Disease

관상동맥질환 치료를 위한 생체흡수형스텐트의 개발 동향

  • 정경원 (순천대학교 공과대학 고분자공학과) ;
  • 김태훈 ((주)시지바이오) ;
  • 나재운 (순천대학교 공과대학 고분자공학과) ;
  • 박준규 ((주)시지바이오)
  • Received : 2018.08.21
  • Accepted : 2018.09.06
  • Published : 2018.10.10

Abstract

The coronary artery disease (CAD) is rapidly increasing such as angina pectoris and atherosclerosis. The CAD is induce by cholesterol and calcium like plaque absortion to artery wall. The percutaneouss coronary intervention is non-invasive treatment that narrowed-artery is expand by using balloon catheter and bare metallic stent. The metallic stents have been effective in reducing the dead by coronary artery disease, but the permanent presence of the metallic stent has been associated with persistent inflammation, and incidence of late thrombosis. Therefore, development bioresorbable vascular scaffold (BRS) is rapidly increasing for treatment of long-term complications and arterial restenosis by permanentmetal prosthesis such as stent. The review discusses the BRS trend for successfully development.

협심증, 심근경색과 같은 관상동맥 질환은 급속도로 증가하고 있다. 관상동맥 질환은 콜레스테롤과 칼슘과 같은 플라크들이 혈관벽에 흡착되어 발생한다. 심혈관 중재시술은 풍선 카테터와 금속스텐트를 이용하여 좁아진 관상동맥혈관을 확장시키는 비수술적 시술방법이다. 금속재질의 스텐트는 관상동맥질환에 의한 사망자를 감소시키는데 효과적이었지만 영구적으로 혈관에 금속재질 스텐트가 이식되어 있기 때문에 지속적인 염증과 후기 혈전증 등이 발생되었다. 따라서, 스텐트와 같은 영구적 보철물에 의한 합병증과 재협착 등을 해결하기 위한 생체 흡수성 혈관 지지체의 개발은 급속도로 증가되고 있다. 이 리뷰에서는 생체흡수형스텐트의 성공적인 개발을 위한 동향에 대해서 논하고자 한다.

Keywords

References

  1. C. Landau, R. A. Lange, and L. D. Hilis, Percutaneous transluminal coronary angioplasty, N. Engl. J. Med., 330, 981-993 (1994). https://doi.org/10.1056/NEJM199404073301407
  2. G. L. Buchanan, S. Basavarajaiah, and A. Chieffo, Stent thrombosis: incidence, predictors and new technologies, Thrombosis, 2012, 956-962 (2012).
  3. B. D. Gogas, Bioresorbable scaffolds for percutaneous coronary interventions, Glob. Cardiol. Sci. Pract., 40, 409-427 (2014).
  4. A. Abizaid, R. A. Costa, and J. Schofer, Serial multimodality imaging and 2-year clinical outcomes of the novel DESolve novolimus-eluting bioresorbable coronary scaffold system for the treatment of single de novo coronary lesions, J. Am. Coll. Cardiol., 9, 565-574 (2016).
  5. S. Verheye, J. A. Ormiston, J. Stewart, M. Webster, E. Sanidas, and R. Costa, A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation, JACC Cardiovasc. Interv., 7, 89-99 (2014). https://doi.org/10.1016/j.jcin.2013.07.007
  6. M. Ying and Z. Chunjiao, Gloval Bioresorbable Vascular Scaffold Sales Market Report 2017, 1-129, QYResearch, CA, USA (2017).
  7. Y. C. Lee, Health Industry Brief Medical Device Market Statistics: Stent, Korea Health Industry Development Institute, 52, 1-20 (2017).
  8. H. Y. Ang, H. Bulluck, P. Wong, S. S. Venkatraman, Y. Huang, and N. Foin, Bioresrobable stent: Current and upcoming bioresorbable technologies, Int. J. Cardiol., 228, 931-939 (2017). https://doi.org/10.1016/j.ijcard.2016.11.258
  9. H. Hermawan, D. Dube, and D. Mantovani, Developments in metallic biodegradable stents, Acta Biomater, 6, 1693-1697 (2010). https://doi.org/10.1016/j.actbio.2009.10.006
  10. J. Iqbal, Y. Ounuma, J. Ormistion, A. Abizaid, R. Wasksman, and P. W. Serruys, Bioresorbable scaffolds: rationale, current status, challenges, and future, Eur. Heart J., 35, 765-776 (2014). https://doi.org/10.1093/eurheartj/eht542
  11. E. Tenekecioglu, P. W. Serruys, Y. Onuma, R. Costa, D. Chamie, Y. Sotomi, T. B. Yu, A. Abizaid, H. B. Liew, and T. Santoso, Randomized comparsion of Absorb bioresorbable vascular scaffold and Mirage microfiber sirolimus-eluting scaffold using multimodality imaging, JACC Cadiovasc. Interv., 10(11), 1115-1130 (2017). https://doi.org/10.1016/j.jcin.2017.03.015
  12. M. C. Chen, Y. Chang, C. T. Liu, W. Y. Lai, S. F. Peng, Y. W. Hung, H. W. Tasi, and H. Sung, The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents, Biomaterials, 30, 79-88 (2009). https://doi.org/10.1016/j.biomaterials.2008.09.006
  13. S. A. Park, S. J. Lee, K. S. Lim, I. H. Bae, J. H. Lee, W. D. Kim, M. H. Jeong, and J. K. Park, In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system, Mater. Lett., 141, 355-358 (2015). https://doi.org/10.1016/j.matlet.2014.11.119
  14. B. Gogas, V. Farooq, Y. Onuma, and P. W. Serruys, The ABSORB bioresorbable vascular scaffold an evolution or reverlution in interventional cardiology, Hellenic J. Cardiol., 53, 301-309 (2012).
  15. P. W. Serruys, Y. Onuma, H. M. Garcia, T. Muramatsu, R. J. vanGeuns, B. de Bruyne, D. Dudek, L. Thuesen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, C. Dorange, S. Veldhof, K. M. Hebert, R. Rapoza, and J. A. Ormiston, Dynamics of vessel wall changes following the implantation of the absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months, Eurointervention, 9(11), 1271-1284 (2014). https://doi.org/10.4244/EIJV9I11A217
  16. P. Staehr, ABSORB bioresorbable vascular scaffold system. The 4th revolution in interventional cardiology, 17th Asian Harmonization Working Party Annual Conference, November 2-6, Taipei, Taiwan (2012).
  17. D. Regazzoli, P. Leone, A. Colombo, and A. Latib, New generation bioresorbable scaffold technologies: An update on novel devices and clinical results, J. Thorac. Dis., 9, 979-985 (2017). https://doi.org/10.21037/jtd.2017.03.112
  18. S. McMahon, N. Bertolo, E. D. O'Cearbhaill, J. Salber, L. Pierucci, P. Duffy, T. Durig, V. Bi, and W. Wang, Bio-resorbable polymer stents: a review of material progress and prospects, Prog. Polym. Sci., 83, 79-96 (2018). https://doi.org/10.1016/j.progpolymsci.2018.05.002
  19. A. Abizaid, D. Carrie, N. Frey, M. Lutz, J. Weber-Albers, and D. Dudek, 6-Month clinical and angiographic outcomes of a novel radio radiopaque sirolimus-eluting bioresorbable vascualr scaffold: the FANTOM II study, JACC Cadiovac. Interv., 10, 1832-1838 (2017). https://doi.org/10.1016/j.jcin.2017.07.033
  20. W. Schmidt, P. Behrens, C. Brandt-Wunderlich, S. Siewert, N. Grabow, and K. P. Schmitz, In vitro performance investigation of bioresorbable scaffolds-Standard test for vascular stents and beyond, Cardiovasc. Revasc. Med., 17, 375-383 (2016). https://doi.org/10.1016/j.carrev.2016.05.001
  21. C. Campos, Y. Zhanh, C. Boutantas, T. Muramatsu, H. Garcia, P. Lemos, Y. Onuma, and P. W. Serruys, Bioresorbable vascular scaffolds in the clinical setting. J. Interv. Cardiol., 5, 639-646 (2013). https://doi.org/10.2217/ica.13.72
  22. A. Abizaid, First report on the pivotal DESolve Nx trial: 6-month clinical and multi-modality imaging results, presented in EuroPCR 2013, May 21, Paris, France (2013).
  23. B. D. Gogas, Bioresorbable scaffolds for percutaneous coronary interventions, Glob. Cardiol. Sci. Pract., 40, 409-427 (2014).
  24. T. P. Vahl, P. Gasior, C. A. Gongora, K. Ramzipoor, C. Lee, and Y. Cheong, Four-year polymer biocompatiblity and vascular scaffold: An OCT study in healthy procine coronary arteries, Eurointervention, 12, 1510-1518 (2016). https://doi.org/10.4244/EIJ-D-16-00308
  25. A. S. Rao, M. S. Makaroun, L. K. Marone, J. S. Cho, R. Rhee, and R. A. Chaer, Long-term otucomes of internal carotid artery dissection, Stroke, 40, 499-504 (2009). https://doi.org/10.1161/STROKEAHA.108.519694
  26. A. Seth, Y. Onuma, R. Costa, P. Chandra, V. K. Bahl, and C. N. Manjunath, First-in-human evaluation of a novel poly(L-lactide) based sirolimus-eluting bioresrobable vascular scaffold for the treatment of de novo native coronary artery lesions: meRes-1 trial. Eurointervention, 13, 415-423 (2017). https://doi.org/10.4244/EIJ-D-17-00306
  27. Y. Wu, L. Shen, Q. Wang, L. Ge, J. Xie, and X. Hu, Comparison of acute recoil between bioabsorbable poly(L-lactic acid) XINSORB stent and metallic stent in porcine model, J. Biomed. Biotechnol., 2012, 1-8 (2012).
  28. Y. Zhang, C. V. Bourantas, V. Farooq, T. Muramastsu, R. Diletti, Y. Onuma, H. M. Garcia, and P. W. Serruys, Bioresorbable scaffolds in the treatment of coronary artery disease, Med. Devices (Auckl.), 6, 37-48 (2013).
  29. C. Rapetto and M. Leoncini, Margmaris: A new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and futrue perspectives, J. Thorac. Dis., 9, S903-S913 (2017). https://doi.org/10.21037/jtd.2017.06.34