DOI QR코드

DOI QR Code

Effects of the β-Glucan- and Xanthan gum-based Biopolymer on the Performance of Plants Inhabiting in the Riverbank

바이오폴리머 신소재가 하천 자생 식물 발아 및 생장에 주는 영향

  • An, Joo Hee (School of Earth Sciences and Environmental Engineering, Gwanju Institute of Science and Technology) ;
  • Jeong, Hyungsoon (School of Earth Sciences and Environmental Engineering, Gwanju Institute of Science and Technology) ;
  • Kim, Eunsuk (School of Earth Sciences and Environmental Engineering, Gwanju Institute of Science and Technology)
  • 안주희 (광주과학기술원 지구환경공학부) ;
  • 정형순 (광주과학기술원 지구환경공학부) ;
  • 김은석 (광주과학기술원 지구환경공학부)
  • Received : 2018.09.17
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

Biopolymer based on microbial ${\beta}$-glucan and xanthan gum is a rising geotechnical material that can enhance the cohesion between soil particles and consequently reduce soil erosion. Recently, biopolymer is proposed to utilize for the riverbank strengthening. As an effort of the ecological assessment of biopolymer application in civil engineering, this study examined the effects of biopolymer on seed germination and growth of nine plant species inhabiting in the Korean riverside. Responses of above-ground growth to the biopolymer differed among plant species. One species grew less but others maintained their growth when plants were grown in the soil with biopolymer. In contrast, root grew more vigorously and root/shoot ratio decreased in the biopolymer across testing plant species. These results indicate that biopolymer application on the river bank likely stimulate root growth of native plant species, which, in turn, possibly reinforces riverbank. Species specific responses of above-ground growth implies that ecological effects of biopolymer application would depend on the species composition of the ecosystem.

하천 제방의 토양 안정화 물질의 하나로, 미생물 유래 베타글루칸과 잔탄검 계열 바이오폴리머를 사용하고자 하는 연구가 현재 진행중이다. 본 연구의 목적은 바이오폴리머 신소재의 생태성 평가의 일환으로, 바이오폴리머가 국내 하천에 자생하는 식물의 씨앗 발아 및 생육에 미치는 영향을 평가하는 것이다. 낙동강과 영산강에 자생하는 총 9종의 식물을 대상으로 시험한 결과, 발아율, 총 건중량, 지상부 건중량, specific leaf area 등 지상부 형질에서는 식물종 별로 다양한 바이오폴리머에 대한 반응을 나타냈다. 애기똥풀의 총 건중량과 지상부 건중량은 감소한 반면 타 식물종들은 건중량을 유지하거나 다소 증가시켰다. 반면 대상 식물종들의 뿌리 생장 (뿌리 길이, 지상부 대비 지하부 건중량)은 바이오폴리머가 처리된 토양에서 증가하는 경향을 보였다. 이러한 결과로 보아, 본 연구에서 시험된 바이오폴리머는 토양 강화 효과와 함께 자생 식물의 뿌리 생장을 촉진시켜, 제방을 강화시키는 역할을 할 것으로 기대된다. 그러나 화학물질들에 대한 식물 반응의 종 특이성을 고려할 때, 보다 광범위한 식물종을 대상으로 하는 연구가 필요할 것이다.

Keywords

References

  1. Bittel P. and Robatzek, S. 2007. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Current Opinion in Plant Biology 10: 335-341 https://doi.org/10.1016/j.pbi.2007.04.021
  2. Chang, I., Im, J., and Cho, G.C. 2016. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8: 251. https://doi.org/10.3390/su8030251
  3. Chang, I., Prasidhi, A.K., Im, J., Shin, H.D., and Cho, G.C. 2015. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253-254: 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
  4. Chang, Y.J., Lee, S., Yoo, M.A., and Lee, H.G. 2006. Structural and biological characterization of sulfated-derivatized oat ${\beta}$-glucan. Journal of Agricutural and Food Chemistry 54: 3815-3818 https://doi.org/10.1021/jf060243w
  5. Choi, H.S., and Lee, W.H. 2014. Analyses of shear stress and erosion characteristic in a vegetated levee revetment with root fiber quantity. Ecology and Resilient Infrastructure 1: 29-38. (in Korean) https://doi.org/10.17820/eri.2014.1.1.029
  6. Evette A., Labonne, S., Rey F., Liebault, F., Jancke O., and Girel, J. 2009. History of bioengineering techniques for erosion control in rivers in Western Europe. Environmental Management 43: 972-984. https://doi.org/10.1007/s00267-009-9275-y
  7. Kim, G.T. and Um, T.W. 1995. A Study for the utilization of wild herbaceous species - effects of gibberelic acid treatment on seed germination. Korean Journal of Environment and Ecology 9: 56-61. (in Korean)
  8. Ko, D. and Kang, J. 2018. Experimental studies on the stability assessment of a levee using reinforced soil based on a biopolymer. Water 10: 1059. https://doi.org/10.3390/w10081059
  9. Lee, T.B. 2003. Coloured flora of Korea. Hyang Mun Sa, Seoul. (in Korean)
  10. OECD. 2006. OECD guideline for the testing of chemicals. https://doi.org/10.1787/20745761.
  11. Peirez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., and Jaureguiberry, P. 2013. New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234. https://doi.org/10.1071/BT12225
  12. Pollen, N. 2007. Temporal and spatial variability in root reinforcement of streambanks: accounting for soil shear strength and moisture. Catena 69: 197-205. https://doi.org/10.1016/j.catena.2006.05.004
  13. R Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
  14. Sultan, S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 12: 537-542.