DOI QR코드

DOI QR Code

Dynamic mix design optimization of high-performance concrete

  • Ziaei-Nia, Ali (Civil Engineering Department, Faculty of Engineering, Hakim Sabzevari University) ;
  • Shariati, Mahdi (Faculty of Civil Engineering, University of Tabriz) ;
  • Salehabadi, Elnaz (Civil Engineering Department, Faculty of Engineering, Hakim Sabzevari University)
  • Received : 2018.04.27
  • Accepted : 2018.07.05
  • Published : 2018.10.10

Abstract

High performance concrete (HPC) depends on various parameters such as the type of cement, aggregate and water reducer amount. Generally, the ready concrete company in various regions according to the requirements and costs, mix design of concrete as well as type of cement, aggregates, and, amount of other components will vary as a result of moment decisions or dynamic optimization, though the ideal conditions will be more applicable for the design of mix proportion of concrete. This study aimed to apply dynamic optimization for mix design of HPC; consequently, the objective function, decision variables, input and output variables and constraints are defined and also the proposed dynamic optimization model is validated by experimental results. Results indicate that dynamic optimization objective function can be defined in such a way that the compressive strength or performance of all constraints is simultaneously examined, so changing any of the variables at each step of the process input and output data changes the dynamic of the process which makes concrete mix design formidable.

Keywords

References

  1. Abedini, M., Khlaghi, E.A., Mehrmashhadi, J., Mussa, M.H., Ansari, M. and Momeni, T. (2017), "Evaluation of Concrete Structures Reinforced with Fiber Reinforced Polymers Bars: A Review", J. Asian Sci. Res., 7(5), 165-175.
  2. Aghaee, K. and Foroughi, M. (2013), "Mechanical properties of lightweight concrete partition with a core of textile waste", Adv. Civil Eng., 2013, 1-7.
  3. Aitcin, P.-C. (2011), High Performance Concrete, CRC Press.
  4. Akgul, M., Demir, M. and Akay, A.E. (2017), "Analyzing dynamic curve widening on forest roads", J. Forest. Res., 28(2), 411-417. https://doi.org/10.1007/s11676-016-0316-0
  5. Anghinolfi, D., Paolucci, M., Robba, M. and Taramasso, A.C. (2013), "A dynamic optimization model for solid waste recycling", Waste Manag., 33(2), 287-296. https://doi.org/10.1016/j.wasman.2012.10.006
  6. Bassuoni, M.T. and Nehdi, M.L. (2005), "The case for airentrainment in high-performance concrete", Proceedings of the ICE-Structures and Buildings, 158(5), 311-319.
  7. Bazzaz, M., Darabi, M.K., Little, D.N. and Garg, N. (2018), "A straightforward procedure to characterize nonlinear viscoelastic response of asphalt concrete at high temperatures", Transportation Research Record: J. Transport. Res. Board.
  8. Bonvin, D., Srinivasan, B. and Ruppen, D. (2001), Dynamic optimization in the batch chemical industry.
  9. Bouteiller, V., Cremona, C., Baroghel-Bouny, V. and Maloula, A. (2012), "Corrosion initiation of reinforced concretes based on Portland or GGBS cements: Chloride contents and electrochemical characterizations versus time", Cement Concrete Res., 42(11), 1456-1467. https://doi.org/10.1016/j.cemconres.2012.07.004
  10. Brandt, A.M. (1998), Optimization Methods for Material Design of Cement-based Composites, CRC Press.
  11. C33, A. (2004), Standard Specification for Concrete Aggregates, ASTM International West Conshohocken, PA, USA.
  12. Capon-Garcia, E., Guillen-Gosalbez, G. and Espuna, A. (2013), "Integrating process dynamics within batch process scheduling via mixed-integer dynamic optimization", Chem. Eng. Sci., 102, 139-150.
  13. Eskandari-Naddaf, H. and Kazemi, R. (2017), "ANN prediction of cement mortar compressive strength, influence of cement strength class", Construct. Build. Mater., 138, 1-11.
  14. Eskandari-Naddaf, H., Davoodi, A. and Ghanei, A. (2014), "Effect of Micro Silica and Air Entraining Admixture on Corrosion of Reinforced Concrete".
  15. Fanaie, N. and Dizaj, E.A. (2014), "Response modification factor of the frames braced with reduced yielding segment BRB", Struct. Eng. Mech., Int. J., 50(1), 1-17. https://doi.org/10.12989/sem.2014.50.1.001
  16. Feng, J., Liu, L. and Parlar, M. (2010), "An efficient dynamic optimization method for sequential identification of grouptestable items", IIE Transactions, 43(2), 69-83. https://doi.org/10.1080/0740817X.2010.504684
  17. Folliard, K.J. and Berke, N.S. (1997), "Properties of highperformance concrete containing shrinkage-reducing admixture", Cement Concrete Res., 27(9), 1357-1364. https://doi.org/10.1016/S0008-8846(97)00135-X
  18. Goodspeed, C.H., Vanikar, S. and Cook, R. (1996), "Highperformance concrete defined for highway structures", Concrete Int., 18(2), 62-67.
  19. Grigonis, D., Ivanauskas, E. and RUDZIONIS, Z. (2011), "Concrete Dust Influence on Cement Stone Properties", Mater. Sci., 17(2), 197-202.
  20. Hajek, P. and Fiala, C. (2008), "Environmentally optimized floor slab using UHPC-contribution to sustainable building", Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany.
  21. Hirschi, T., Knauber, H., Lanz, M., Schlumpf, J., Schrabback, J., Spirig, C. and WAEBER, U. (2005), Sika Concrete Handbook, Sika Services AG, Zurique, Suica.
  22. Holm, T.A. and Bremner, T.W. (2000), "State-of-the-art report on high-strength, high-durability structural low-density concrete for applications in severe marine environments", US Army Corps of Engineers, Engineer Research and Development Center.
  23. Hosseinpour, E., Baharom, S., Badaruzzaman, W.H.W., Shariati, M. and Jalali, A. (2018), "Direct shear behavior of concrete filled hollow steel tube shear connector for slim-floor steel beams", Steel Compos. Struct., Int. J., 26(4), 485-499.
  24. Hsiao, C.-T. and Chang, L.-C. (2002), "Dynamic optimal groundwater management with inclusion of fixed costs", J. Water Res. Plan. Manag., 128(1), 57-65. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:1(57)
  25. Institute, A.C. (1998), "Guide for Selecting Proportions for High-Strength Concrete with Portland Cement and Fly Ash", ACI Committee 211.4R-93, USA.
  26. Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali, A. and Tahir, M.M. (2017a), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., Int. J., 63(2), 259-268.
  27. Khorami, M., Alvansazyazdi, M., Shariati, M., Zandi, Y., Jalali, A. and Tahir, M. (2017b), "Seismic performance evaluation of buckling restrained braced frames (BRBF) using incremental nonlinear dynamic analysis method (IDA)", Earthq. Struct., Int. J., 13(6), 531-538.
  28. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., Int. J., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067
  29. Koloo, F.A., Badakhshan, A., Fallahnejad, H., Jamkhaneh, M.E. and Ahmadi, M. (2018), "Investigation of Proposed Concrete Filled Steel Tube Connections under Reversed Cyclic Loading", Int. J. Steel Struct., 18(1), 163-177. https://doi.org/10.1007/s13296-018-0313-6
  30. Konkov, V. (2013), "Principle Approaches to High Performance Concrete Application in Construction", Procedia Eng., 57, 589-596. https://doi.org/10.1016/j.proeng.2013.04.075
  31. Lambert, D.K. and Harris, T.R. (1990), "Stochastic dynamic optimization and rangeland investment decisions", Western J. Agricultural Econom., 186-195.
  32. Lekūnaitė, L., Laukaitis, A., Kligys, M. and Mikulskis, D. (2012), "Investigations of Forming Mixture Parameters of Autoclaved Aerated Concrete with Nanoadditives", Mater. Sci., 18(3), 284-289.
  33. Lu, H.W., Huang, G.H., He, L. and Zeng, G.M. (2009), "An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control", J. Environ. Manag., 90(1), 396-409. https://doi.org/10.1016/j.jenvman.2007.10.011
  34. Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M.M. and Petkovic, D. (2017), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manuf., 1-11.
  35. Mehta, P.K. and Monteiro, P.J. (2006), Concrete: Microstructure, Properties and Materials, McGraw-Hill, New York, NY, USA.
  36. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2013), "Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams", Struct. Eng. Mech., Int. J., 46(6), 853-868. https://doi.org/10.12989/sem.2013.46.6.853
  37. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/sss.2014.14.5.785
  38. Nagrockienė, D., Skripkiūnas, G. and Girskas, G. (2011), "Predicting frost resistance of concrete with different coarse aggregate concentration by porosity parameters", Mater. Sci., 17(2), 203-207.
  39. Nagrockiene, D., Gailius, A., SKRIPKIUNAS, G., PUNDIENE, I., Girskas, G. and Abasova, A. (2013), "The effect of plasticizing admixture on the physical and mechanical properties of concrete with limestone cement", Mater. Sci., 19(3), 337-342.
  40. Nasrollahi, S., Maleki, S., Shariati, M., Marto, A. and Khorami, M. (2018), "Investigation of pipe shear connectors using push out test", Steel Compos. Struct., Int. J., 27(5), 537-543.
  41. Nobakht, M., Sakhaeifar, M.S. and Newcomb, D.E. (2017), "Selection of Structural Overlays Using Asphalt Mixture Performance", J. Mater. Civil Eng., 29(11), 04017209. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002070
  42. Paknahad, M., Bazzaz, M. and Khorami, M. (2018), "Shear capacity equation for channel shear connectors in steel-concrete composite beams", Steel Compos. Struct., Int. J., 28(4), 483-494.
  43. Parhizkar, T. and Raiss Ghasemi, A.M. (2009), "High-performance Concrete New Generation", Proceedings of the 3rd International Conference on Concrete and Development. Iran, Tehran.
  44. Park, J.J., Kang, S.T., Koh, K.T. and Kim, S.W. (2008), "Influence of the ingredients on the compressive strength of UHPC as a fundamental study to optimize the mixing proportion", Proceedings of the International Symposium on Ultra-high Performance Concrete, Structural Materials and Engineering Series.
  45. Prasad, B.R., Eskandari, H. and Reddy, B.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014
  46. Rao, S.S. and Rao, S. (2009), Engineering Optimization: Theory and Practice, John Wiley & Sons.
  47. Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steelconcrete composite beam's shear strength", Steel Compos. Struct., Int. J., 21(3), 679-688.
  48. Sechi, G.M. and Sulis, A. (2009), "Dynamic attribution of water quality indexes in a multi-reservoir optimization model", Desalination, 237(1), 99-107. https://doi.org/10.1016/j.desal.2007.12.026
  49. Shariati, M. (2008), Assessment Building Using None-destructive Test Techniques (ultra Sonic Pulse Velocity and Schmidt Rebound Hammer), Universiti Putra Malaysia.
  50. Shariati, M., Ramli Sulong, N.H., Arabnejad Khanouki, M.M. and Shariati, A. (2011), "Experimental and numerical investigations of channel shear connectors in high strength concrete", Proceedings of the 2011 World Congress on Advances in Structural Engineering and Mechanics (ASEM'11+), Seoul, South Korea.
  51. Shariati, M., Sulong, N.R. and Khanouki, M.A. (2012), "Experimental assessment of channel shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Mater. Des., 34, 325-331. https://doi.org/10.1016/j.matdes.2011.08.008
  52. Shariati, A., Shariati, M., Sulong, N.R., Suhatril, M., Khanouki, M.A. and Mahoutian, M. (2014a), "Experimental assessment of angle shear connectors under monotonic and fully reversed cyclic loading in high strength concrete", Constr. Build. Mater., 52, 276-283. https://doi.org/10.1016/j.conbuildmat.2013.11.036
  53. Shariati, M., Shariati, A., Sulong, N.R., Suhatril, M. and Khanouki, M.A. (2014b), "Fatigue energy dissipation and failure analysis of angle shear connectors embedded in high strength concrete", Eng. Fail. Anal., 41, 124-134. https://doi.org/10.1016/j.engfailanal.2014.02.017
  54. Shariati, M., Sulong, N.R., Shariati, A. and Kueh, A.B.H. (2016), "Comparative performance of channel and angle shear connectors in high strength concrete composites: An experimental study", Constr. Build. Mater., 120, 382-392. https://doi.org/10.1016/j.conbuildmat.2016.05.102
  55. Sherbaf, M.R. and Eftekhar N.S. (2012), "Effects of water-cement and cement content on properties of HPC", Proceedings of the 4th Annual National Conference on Concrete, Tehran, Iran.
  56. Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014), "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel Compos. Struct., Int. J., 17(5), 623-639. https://doi.org/10.12989/scs.2014.17.5.623
  57. Toghroli, A., Suhatril, M., Ibrahim, Z., Safa, M., Shariati, M. and Shamshirband, S. (2016), "Potential of soft computing approach for evaluating the factors affecting the capacity of steel-concrete composite beam", J. Intell. Manuf., 1-9.
  58. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.A.M., Heydari, A., Wakil, K., Gebreel, S.A. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, Int. J., 21(5), 525-530.
  59. Ulanicki, B., Kahler, J. and See, H. (2007), "Dynamic optimization approach for solving an optimal scheduling problem in water distribution systems", J. Water Res. Plan. Manag., 133(1), 23-32. https://doi.org/10.1061/(ASCE)0733-9496(2007)133:1(23)
  60. Wang, C., Yang, C., Liu, F., Wan, C. and Pu, X. (2012), "Preparation of ultra-high performance concrete with common technology and materials", Cement Concrete Compos., 34(4), 538-544. https://doi.org/10.1016/j.cemconcomp.2011.11.005
  61. Wei, X., Shariati, M., Zandi, Y., Pei, S., Jin, Z., Gharachurlu, S., Abdullahi, M.M., Tahir, M.M. and Khorami, M. (2018), "Distribution of shear force in perforated shear connectors", Steel Compos. Struct., Int. J., 27(3), 389-399.
  62. Zandi, Y., Shariati, M., Marto, A., Wei, X., Karaca, Z., Dao, D.K., Toghroli, A., Hashemi, M.H., Sedghi, Y., Wakil, K. and Khorami, M. (2018), "Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake", Steel Compos. Struct., Int. J., 28(4), 439-447.
  63. Zia, P. (1993), Mechanical Behavior of High Performance Concretes, National Academy of Sciences.
  64. Ziaei-Nia, A., Tadayonfar, G.R. and Eskandari-Naddaf, H. (2018), "Effect of Air Entraining Admixture on Concrete under Temperature Changes in Freeze and Thaw Cycles", Materials Today: Proceedings, 5(2), 6208-6216.

Cited by

  1. Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS) vol.34, pp.1, 2018, https://doi.org/10.12989/scs.2020.34.1.155
  2. Numerical study on the axial compressive behavior of built-up CFT columns considering different welding lines vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.377
  3. The effect of RBS connection on energy absorption in tall buildings with braced tube frame system vol.34, pp.3, 2018, https://doi.org/10.12989/scs.2020.34.3.393
  4. Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.743
  5. Elevated temperature resistance of concrete columns with axial loading vol.9, pp.4, 2018, https://doi.org/10.12989/acc.2020.9.4.355
  6. Effect of progressive shear punch of a foundation on a reinforced concrete building behavior vol.35, pp.2, 2018, https://doi.org/10.12989/scs.2020.35.2.279
  7. Optimized AI controller for reinforced concrete frame structures under earthquake excitation vol.11, pp.1, 2021, https://doi.org/10.12989/acc.2021.11.1.001
  8. Assessment of microstructure and surface effects on vibrational characteristics of public transportation vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.101
  9. Smart estimation of automatic approach in enhancing the road safety under AASHTO Standard specification and STM vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.389
  10. Investigating the effect of using three pozzolans separately and in combination on the properties of self-compacting concrete vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.141
  11. Experimental study of reversal of multidrug resistance in human leukemia K562/DOX cells by toad venom vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.219
  12. Application of multi-hybrid metaheuristic algorithm on prediction of split-tensile strength of shear connectors vol.28, pp.2, 2018, https://doi.org/10.12989/sss.2021.28.2.167
  13. Analyzing shear strength of steel-concrete composite beam with angle connectors at elevated temperature using finite element method vol.40, pp.6, 2018, https://doi.org/10.12989/scs.2021.40.6.853