DOI QR코드

DOI QR Code

Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load

  • Choudhary, Prashant K. (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines)) ;
  • Jana, Prasun (Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines))
  • Received : 2018.02.09
  • Accepted : 2018.08.03
  • Published : 2018.10.10

Abstract

Position of a circular or elliptical cutout within an orthotropic plate has great influence on its buckling behavior. This paper aims at finding the optimal position (both location and orientation) of a single circular/elliptical cutout, within an orthotropic rectangular plate, that maximizes the critical buckling load. We consider linear buckling of simply supported orthotropic plates under uniaxial edge loads. To obtain the optimal positions of the cutouts, we have employed a MATLAB optimization routine coupled with buckling computation in ANSYS. Our results show that the position of the cutout that maximizes the buckling load has great dependence on the material properties, laminate configurations, and the geometrical parameters of the plate. These optimal results, for a number of plate geometries and cutout sizes, are reported in this paper. These results will be useful in the design of perforated orthotropic plates against buckling failure.

Keywords

References

  1. Adali, S., Lene, F., Duvaut, G. and Chiaruttini, V. (2003), "Optimization of laminated composites subject to uncertain buckling loads", Compos. Struct., 62(3-4), 261-269. https://doi.org/10.1016/j.compstruct.2003.09.024
  2. Aktas, M. and Balcioglu, H.E. (2014), "Buckling behavior of pultruded composite beams with circular cutouts", Steel Compos. Struct., Int. J., 17(4), 359-370. https://doi.org/10.12989/scs.2014.17.4.359
  3. Al Qablan, H., Katkhuda, H. and Dwairi, H. (2009), "Assessment of the buckling behavior of square composite plates with circular cutout subjected to in-plane shear", Jordan J. Civil Eng., 3(2), 184-195.
  4. Altunsaray, E. and Bayer, I. (2014), "Buckling of symmetrically laminated quasi-isotropic thin rectangular plates", Steel Compos. Struct., Int. J., 17(3), 305-320. https://doi.org/10.12989/scs.2014.17.3.305
  5. Anil, V., Upadhyay, C.S. and Iyengar, N.G.R. (2007), "Stability analysis of composite laminate with and without rectangular cutout under biaxial loading", Compos. Struct., 80(1), 92-104. https://doi.org/10.1016/j.compstruct.2006.04.088
  6. ANSYS Inc. (2015), ANSYS Reference Manual, Release 15.0 Documentation for ANSYS.
  7. Baba, B.O. (2007), "Buckling behavior of laminated composite plates", J. Reinf. Plast. Compos., 26(16), 1637-1655. https://doi.org/10.1177/0731684407079515
  8. Baba, B.O. and Baltaci, A. (2007), "Buckling characteristics of symmetrically and antisymmetrically laminated composite plates with central cutout", Appl. Compos. Mater., 14(4), 265-276. https://doi.org/10.1007/s10443-007-9045-z
  9. Baltaci, A., Sarikanat, M. and Yildiz, H. (2006), "Buckling analysis of laminated composite circular plates with holes", J. Reinf. Plast. Compos., 25(7), 733-744. https://doi.org/10.1177/0731684406062065
  10. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., Int. J., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  11. Darvizeh, M., Darvizeh, A. and Sharma, C.B. (2002), "Buckling analysis of composite plates using differential quadrature method (DQM)", Steel Compos. Struct., Int. J., 2(2), 99-112.
  12. Ghannadpour, S.A.M., Najafi, A. and Mohammadi, B. (2006), "On the buckling behavior of cross-ply laminated composite plates due to circular/elliptical cutouts", Compos. Struct., 75(1-4), 3-6. https://doi.org/10.1016/j.compstruct.2006.04.071
  13. Goldberg, D.E. (2005), "Genetic algorithms in search, optimization, and machine learning", Pearson Education Inc.
  14. Jain, P. and Kumar, A. (2004), "Postbuckling response of square laminates with a central circular/elliptical cutout", Compos. Struct., 65(2), 179-185. https://doi.org/10.1016/j.compstruct.2003.10.014
  15. Jana, P. (2016), "Optimal design of uniaxially compressed perforated rectangular plate for maximum buckling load", Thin-Wall. Struct., 103, 225-230.
  16. Komur, M.A. (2011), "Elasto-plastic buckling analysis for perforated steel plates subject to uniform compression", Mech. Res. Commun., 38(2), 117-122. https://doi.org/10.1016/j.mechrescom.2011.01.001
  17. Komur, M.A. and Sonmez, M. (2008), "Elastic buckling of rectangular plates under linearly varying in-plane normal load with a circular cutout", Mech. Res. Commun., 35(6), 361-371. https://doi.org/10.1016/j.mechrescom.2008.01.005
  18. Komur, M.A., Sen, F., Atas, A. and Arslan, N. (2010), "Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM", Adv. Eng. Software, 41(2), 161-164. https://doi.org/10.1016/j.advengsoft.2009.09.005
  19. Kumar, D. and Singh, S.B. (2010), "Effects of boundary conditions on buckling and postbuckling responses of composite laminate with various shaped cutouts", Int. J. Mech. Sci., 92(3), 769-779.
  20. Larsson, P.L. (1987), "On buckling of orthotropic compressed plates with circular holes", Compos. Struct., 7(2), 103-121. https://doi.org/10.1016/0263-8223(87)90002-X
  21. Lee, Y.J., Lin, H.J. and Lin, C.C. (1989), "A study on the buckling behavior of an orthotropic square plate with a central circular hole", Compos. Struct., 13(3), 173-188. https://doi.org/10.1016/0263-8223(89)90002-0
  22. Leissa, A.W. (1987), "A review of laminated composite plate buckling", Appl. Mech. Rev., 40(5), 575-591. https://doi.org/10.1115/1.3149534
  23. Lin, C.C. and Kuo, C.S. (1989), "Buckling of laminated plates with holes", J. Compos. Mater., 23(6), 536-553. https://doi.org/10.1177/002199838902300601
  24. Lopatin, A.V. and Morozov, E.V. (2014), "Approximate buckling analysis of the CCFF orthotropic plates subjected to in-plane bending", Int. J. Mech. Sci., 85, 38-44. https://doi.org/10.1016/j.ijmecsci.2014.05.003
  25. Mohammadi, B., Najafi, A. and Ghannadpour, S.A.M. (2006), "Effective widths of compression-loaded of perforated cross-ply laminated composites", Compos. Struct., 75(1-4), 7-13. https://doi.org/10.1016/j.compstruct.2006.04.025
  26. Narayana, A.L., Rao, K. and Kumar, R.V. (2013), "Effect of location of cutout and plate aspect ratio on buckling strength of rectangular composite plate with square/rectangular cutout subjected to various linearly varying in-plane loading using FEM", Int. J. Mech., 7(4) , 508-513.
  27. Nemeth, M.P. (1988), "Buckling behavior of compression-loaded symmetrically laminated angle-ply plates with holes", AIAA Journal, 26(3), 330-336. https://doi.org/10.2514/3.9893
  28. Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2007), "Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression", J. Appl. Mech., 74(4), 798-809. https://doi.org/10.1115/1.2711230
  29. Paluch, B., Grediac, M. and Faye, A. (2008), "Combining a finite element programme and a genetic algorithm to optimize composite structures with variable thickness", Compos. Struct., 83(3), 284-294. https://doi.org/10.1016/j.compstruct.2007.04.023
  30. Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. (2016), "Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads", Steel Compos. Struct., Int. J., 21(1), 37-55. https://doi.org/10.12989/scs.2016.21.1.037
  31. Reddy, J.N. (2003), "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", CRC Press.
  32. Seifi, R., Chahardoli, S. and Attar, A.A. (2017), "Axial buckling of perforated plates reinforced with strips and middle tubes", Mech. Res. Commun., 85, 21-32. https://doi.org/10.1016/j.mechrescom.2017.07.015
  33. Sharma, D.S., Patel, N.P. and Trivedi, R.R. (2014), "Optimum design of laminates containing an elliptical hole", Int. J. Mech. Sci., 85, 76-87. https://doi.org/10.1016/j.ijmecsci.2014.04.019
  34. Sivakumar, K., Iyengar, N.G.R. and Deb, K. (1998), "Optimum design of laminated composite plates with cutouts using a genetic algorithm", Compos. Struct., 42(3), 265-279. https://doi.org/10.1016/S0263-8223(98)00072-5
  35. Spallino, R. and Rizzo, S. (2002), "Multi-objective discrete optimization of laminated structures", Mech. Res. Commun., 29(1), 17-25. https://doi.org/10.1016/S0093-6413(02)00227-6
  36. Srivatsa, K.S. and Murty, A.K. (1992), "Stability of laminated composite plates with cut-outs.", Comput. Struct., 43(2), 273-279. https://doi.org/10.1016/0045-7949(92)90144-O
  37. Topal, U. and Uzman, U. (2007), "Optimum design of laminated composite plates to maximize buckling load using MFD method", Thin-Wall. Struct., 45(7-8), 660-669. https://doi.org/10.1016/j.tws.2007.06.002
  38. Walker, M. (1999), "Optimal design of symmetric laminates with cut-outs for maximum buckling load", Comput. Struct., 70(3), 337-343. https://doi.org/10.1016/S0045-7949(98)00167-9
  39. Zehnder, N. and Ermanni, P. (2006), "A methodology for the global optimization of laminated composite structures", Compos. Struct., 72(3), 311-320. https://doi.org/10.1016/j.compstruct.2005.01.021
  40. Zhang, Y.X. and Yang, C.H. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. https://doi.org/10.1016/j.compstruct.2008.02.014
  41. Zhong, H. and Gu, C. (2007), "Buckling of symmetrical cross-ply composite rectangular plates under a linearly varying in-plane load", Compos. Struct., 80(1), 42-48. https://doi.org/10.1016/j.compstruct.2006.02.030

Cited by

  1. Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.227
  2. Optimization of a composite beam for high-speed railroads vol.37, pp.4, 2018, https://doi.org/10.12989/scs.2020.37.4.493
  3. Buckling treatment of piezoelectric functionally graded graphene platelets micro plates vol.38, pp.3, 2021, https://doi.org/10.12989/scs.2021.38.3.337