DOI QR코드

DOI QR Code

Mycelial Culture and Fruiting Analysis of Panellus edulis Strains Collected in Korea

Panellus edulis 수집 균주의 균사배양 및 자실체 특성 분석

  • Woo, Sung-I (Special Forest Products Division, National Institute of Forest Science) ;
  • Ryoo, Rhim (Special Forest Products Division, National Institute of Forest Science) ;
  • Jang, Yeongseon (Special Forest Products Division, National Institute of Forest Science) ;
  • Park, Youngae (Special Forest Products Division, National Institute of Forest Science) ;
  • Jeong, Yeun Sug (Special Forest Products Division, National Institute of Forest Science) ;
  • Ka, Kang-Hyeon (Special Forest Products Division, National Institute of Forest Science)
  • 우성이 (국립산림과학원 산림소득자원연구과) ;
  • 유림 (국립산림과학원 산림소득자원연구과) ;
  • 장영선 (국립산림과학원 산림소득자원연구과) ;
  • 박영애 (국립산림과학원 산림소득자원연구과) ;
  • 정연석 (국립산림과학원 산림소득자원연구과) ;
  • 가강현 (국립산림과학원 산림소득자원연구과)
  • Received : 2018.08.22
  • Accepted : 2018.08.30
  • Published : 2018.09.01

Abstract

Molecular analysis using the internal transcribed spacer region sequences revealed that the strains used in this study, which were formerly identified as Panellus serotinus, are Panellus edullis. After Universal Fungal PCR Fingerprinting (UFPF) analysis, eight strains of P. edulis were divided into two groups. We conducted fundamental research on mycelial growth and sawdust cultivation to understand the cultural characteristics of eight wild P. edulis strains collected from Korean forests. All strains showed faster and denser mycelial growth on potato dextrose agar (PDA) than on other media (malt extract agar, Sabouraud dextrose agar). Optimal conditions for mycelial growth were: $20^{\circ}C$ on PDA, $25^{\circ}C$ on potato dextrose broth (PDB), and pH 5~8 on PDB at $25^{\circ}C$. Two strains (NIFoS 2407, 3993) were selected as excellent strains based on mycelial growth and density on PDA. NIFoS 2792 showed high cellulase activities on carboxymethyl cellulose (CMC) agar, and NIFoS 2387 and 2804 exhibited high laccase activities on ABTS-containing agar media. The mycelial growth of P. edulis was the fastest on Quercus acutissima and Q. mongolica sawdust media, and mycelial density was the highest on Quercus spp. sawdust-containing media. Sawdust cultivation of P. edulis was successful. The conditions were 80~85 days of cultivation period after spawn inoculation, 10~11 days for primordial formation at $17{\sim}18^{\circ}C$, and 15~20 days for fruiting growth. NIFoS 2804 and 3993 were selected as good strains in terms of cultivation period and mushroom production. These results could be useful for the artificial cultivation of P. edulis.

국내에서 참부채버섯(Panellus serotinus)으로 수집한 8균주의 internal transcribed spacer 영역 염기서열을 이용하여 계통분석을 실시한 결과 참부채버섯이 아닌 Panellus edulis로 나타났다. Universal Fungal PCR Fingerprinting (UFPF) 분석결과 P. edulis 8균주는 크게 두 그룹으로 나눠졌다. 우리나라 산림에 서식하는 8개 균주의 배양특성을 이해하기 위해 균사의 성장과 효소 활성에 대한 기초특성 연구를 수행했다. 모든 균주는 21일 동안 3종류 배지를 사용하여 배양하였고 생장이 적합한 배지는 malt extract agar (MEA), Sabouraud dextrose agar (SDA) 배지보다 potato dextrose agar (PDA)로, 빠른 균사 생장 및 균사 밀도를 보였다. P. edulis 균주의 균사 생육 조건은 PDA에서는 $20^{\circ}C$, potato dextrose broth (PDB)에서는 $25^{\circ}C$가 선발되었으며, 균사생장에 적합한 수소이온 농도가 PDB는 pH 5~8로 이때 균사생장이 영향을 받지 않았다. 두 균주(NIFoS 2792, 2804)는 PDA의 균사 생장 및 밀도를 기준으로 우수한 균주로 선정되었다. 모든 균주는 셀룰라아제와 라카아제 활성을 나타내었고 NIFoS 2407과 2805는 다른 균주보다 높은 효소 활성을 보였다. 그 중에서도 라카아제 활성은 NIFoS 2387이었고 모든 균주는 셀룰라아제를 생산하였다. 톱밥 종류별 시험에서 상수리나무와 신갈나무에서 균사생장속도가 다른 톱밥에서보다 좋았고 균사 밀도도 가장 양호하였다. 버섯의 톱밥재배는 $23^{\circ}C$에서 균 접종 후 80~85일간 배양하였고, 원기형성 온도는 $17{\sim}18^{\circ}C$에서 10~11일간, 자실체 생육은 15~20일간 수행하였다. 버섯 재배 결과, 배양기간과 수량 면에서 NIFoS 2804, NIFoS 3993 균주가 가장 양호한 균주로 선발되었다. 이러한 결과는 추후 P. edulis의 인공재배를 하는데 유용한 정보로 활용 될 수 있을 것이다.

Keywords

References

  1. Korea Forest Service. 2017 Statistical Yearbook of Forestry. Daejeon: Korea Forest Service; 2017.
  2. Ministry of Agriculture, Food and Rural Affairs. 2016 Production of Special Crops. Sejong: Ministry of Agriculture, Food and Rural Affairs; 2018.
  3. Korea Agro-Fisheries & Food Trade Corporation. 2017 Status of Mushroom Market in China [Internet]. Naju: Korea Agro-Fisheries & Food Trade Corporation; 2017 [cited 2018 August 4]. Available from: https://www.kati.net/board/exportNewsView.do?board_seq=85177&menu_dept2=35&menu_dept3=71.
  4. Ministry of Agriculture, Forestry and Fisheries. Mushroom production [Internet]. Tokyo: Ministry of Agriculture, Forestry and Fisheries; 2018 [cited 2018 August 4]. Available from: http://www.maff.go.jp/j/tokei/sihyo/data/25.html.
  5. Kim JH, Lee JS, Lee KR, Shim MJ, Lee MW, Shin PG, Cheong JC, Yoo YB, Lee TS. Immunomodulating and antitumor activities of Panellus serotinus polysaccharides. Mycobiology 2012;40:181-8. https://doi.org/10.5941/MYCO.2012.40.3.181
  6. Lee JS, Oka K, Watanabe O, Hara H, Ishizuka S. Immunomodulatory effect of mushrooms on cytotoxic activity and cytokine production of intestinal propria leukocytes does not necessarily depend on ${\beta}$-glucan contents. Food Chem 2011;126:1521-6. https://doi.org/10.1016/j.foodchem.2010.12.063
  7. Nagao K, Inoue N, Inafuku M, Shirouchi B, Morooka T, Nomura S, Nagamori N, Yanagita T. Mukitake mushroom (Panellus serotinus ) alleviates nonalcoholic fatty liver disease through the suppression of monocyte chemoattractant protein 1 production in db/db mice. J Nutr Biochem 2010;21:418-23. https://doi.org/10.1016/j.jnutbio.2009.01.021
  8. Jeon SM, Ka KH. Mycelial growth and extracellular enzyme activities of wood-decaying mushroom strains on solid media. Kor J Mycol 2014;42:40-9. https://doi.org/10.4489/KJM.2014.42.1.40
  9. Jeon SM, Kim MS, Ka KH. Effects of medium, temperature and pH on mycelial growth and cellulase activity of ectomycorrhizal fungi from Korean forests. Kor J Mycol 2012;40:191-203. https://doi.org/10.4489/KJM.2012.40.4.191
  10. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-9. https://doi.org/10.1093/molbev/mst197
  12. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018;35:1547-9. https://doi.org/10.1093/molbev/msy096
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-25.
  14. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr Microbiol 2008;57:503-7. https://doi.org/10.1007/s00284-008-9276-8
  15. Crowe JD, Olsson S. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorecens strains and a range of chemical treatments. Appl Environ Microbiol 2001;67:2088-94. https://doi.org/10.1128/AEM.67.5.2088-2094.2001
  16. Dai YC, Niemela T, Qin GF. Changbai wood-rooting fungi 14. A new pleurotoid species Panellus edulis. Ann Bot Fenn 2003;40:107-12.
  17. Saito T, Tonouchi A, Harada Y. Biological characteristics and molecular phylogeny of Sarcomyxa edulis comb. Nov. and S. serotine. Trans Mycol Soc Jpn 2014;55:19-28.
  18. Nam Y, Kong WS, Jang KY, Shin PG, Oh MJ, Im IH, Koo CD, Oh YL. Analysis of Intersimple sequence repeat (ISSR) markers in cultivars and collected strains of button mushroom (Agaricus bioporus). J Mushrooms 2017;15;139-44.
  19. Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible basidiomycete Grifola frondosa. Enzyme Microb Technol 2004;35:369-76. https://doi.org/10.1016/j.enzmictec.2003.12.015
  20. Hankin L, Anagnostakis SL. Solid media containing carboxymethylcellulose to detect Cx cellulose activity of micro-organisms. J Gen Microbiol 1977;98:109-15. https://doi.org/10.1099/00221287-98-1-109