DOI QR코드

DOI QR Code

Mycelial Growth Properties of Domestically Collected Ectomycorrhizal Tricholoma Mushrooms in Various Culture Conditions

다양한 배양 환경에 따른 국내 수집 외생균근성 Tricholoma속 종의 균사생장 특성

  • Kang, Jung-A (Department of Microbiology, College of Natural Science, Dankook University) ;
  • Ka, Kang-Hyeon (Special Forest Products Division, National Institute of Forest Science) ;
  • Kim, Jun Young (Department of Microbiology, College of Natural Science, Dankook University) ;
  • Kim, Seong Hwan (Department of Microbiology, College of Natural Science, Dankook University)
  • 강정아 (단국대학교 미생물학과) ;
  • 가강현 (국립산림과학원 산림소득자원연구과) ;
  • 김준영 (단국대학교 미생물학과) ;
  • 김성환 (단국대학교 미생물학과)
  • Received : 2018.08.11
  • Accepted : 2018.08.28
  • Published : 2018.09.01

Abstract

The ectomycorrhizal basidiomycete Tricholoma is one of mushroom groups that cannot be cultivated artificially. To use this mushroom as applicable resource for food production, it is necessary to obtain information about their mycelial growth properties in various environmental conditions. This study investigated the mycelial growth of four domestic isolates of Tricholoma species (T. bakamatsutake, T. fulvocastaneum, T. matsutake, T. terreum) at different physical and chemical conditions. The optimal physical conditions for their mycelia growth were found to be a temperature range of $20{\sim}25^{\circ}C$ and a pH range of 4.0~7.0 in dark condition. The growth of T. matsutake was retarded at high temperature ($30^{\circ}C$). Tests to determine the chemical factors that affected mycelial growth showed that the four Tricholoma spp. grew 1% saline. T. matsutake grew in up to 2% saline. In the presence of various heavy metals (50 ppm) and pesticides (suppliers' recommended concentration), mycelial growth was inhibited the most by cadmium and emamectin benzoate, respectively. However, all the four Tricholoma spp. grew with $Cu^+$. The growth of T. matsutake was not inhibited by abamectin, acetamiprid, and thiacloprid. Extracellular enzyme activities of amylase and ${\beta}$-glucosidase were detected only in T. bakamatsutake and T. fulvocastaneum. The results of the present study allowed us to determine suitable or harmful environmental conditions for the mycelial cultivation of the Tricholoma spp.

외생균근성 버섯균인 송이(Tricholoma)속 균은 현재 인공 재배가 이루어지지 않고 있으며, 성공적인 자원이용을 위해서는 다양한 환경조건에서 균사생장 특성을 규명하는 연구가 선행되어야 한다. 이에 따라 본 연구는 야생버섯 자실체로부터 순수 분리한 4종의 Tricholoma bakamatsutake (가송이), T. fulvocastaneum (구실잣밤나무송이), T. matsutake (송이), T. terreum (땅송이)로부터 물리적, 화학적 환경조건에서 균사생장 특성을 조사하였다. 4종 모두 균사생장에 적합한 물리적 환경으로서 최적 배양 환경 조건은 온도가 $20{\sim}25^{\circ}C$, pH가 4~7, 암 배양 조건인 것을 확인하였다. T. matsutake는 $30^{\circ}C$에서 균사생장이 멈추는 매우 민감한 특성을 보였다. 균사생장에 미치는 화학적 요소 조사 결과, NaCl 농도조건에서 4종의 Tricholoma 모두 1.0% 농도수준 까지 생장이 가능하였다. T. matsutake는 2.0% 농도에서도 균사생장이 가능하였다. 중금속인 카드뮴(50 ppm 농도)과 농약인 emamectin benzoate이 첨가된 배지에서 네 가지 송이속 균의 균사생장이 가장 많이 저해된다는 것을 확인하였다. 중금속구리(Cu) 이온(50 ppm 농도)이 함유된 배지에서는 4종 송이속 균주 모두 균사생장이 거의 저해되지 않았다. T. matsutake는 emamectin benzoate 외에 다른 세 가지 살충제에 대해선 균사생장 억제가 거의 나타나지 않았다. 세포외효소는 T. bakamatsutake와 T. fulvocastaneum만 발색배지에서 Amylase, ${\beta}$-glucosidase 등의 효소활성을 보였다. 본 연구 결과는 4종 송이속 균주의 균사배양에 적합 또는 유해한 환경조건을 구분 할수 있어서 향후 응용 연구에 도움이 될 것으로 기대된다.

Keywords

References

  1. Ka KH, Jeon SM, Ryoo R, Bak WC, Kang JA, Kim MG, Jeon HS, Jeong YS. Basic culture characteristics of ectomycorrhizal mushrooms. Seoul: National Institute of Forest Science; 2014.
  2. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. San Diego: Academic Press; 2008.
  3. Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 2007;174:430-40. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  4. Watkinson SC, Boddy L, Money NP. The fungi. 3rd ed. San Diego: Academic Press; 2016.
  5. Ka KH, Koo CD. Research questions for artificial cultivation of Tricholoma matsutake. Trends Agric Life Sci 2002;36:1-6.
  6. Jeon SM, Ka KH. Morphological and cultural characteristics of ectomycorrhizal mushrooms. Seoul: National Institute of Forest Science; 2015.
  7. Lian C, Narimatsu M, Nara K, Hogetsu T. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 2006;171:825-36. https://doi.org/10.1111/j.1469-8137.2006.01801.x
  8. Kim SH, Uzunovic A, Breuil C. Rapid detection of Ophiostoma piceae and O. quercus in stained wood using PCR. Appl Environ Microbiol 1999;65;287-90.
  9. Kwon HW, Yoon JH, Kim SH, Hong SB, Cheon Y, Ko SJ. Detection of extracellular enzyme activities in various Fusarium spp. Mycobiology 2007;35:162-5. https://doi.org/10.4489/MYCO.2007.35.3.162
  10. Koo NI, Kim YS, Im JH, Choi HT. Development of the monitoring, assessment and management technology for the study of the effect of acidification in forest soil. Seoul: National Institute of Forest Science; 2016.
  11. Jhune CS, Sul HZ, Park JS, Kong WS, You YB, Chun SC. Effect of NaCl concentration on mycelial growth of Pleurotus ostreatus and Trichoderma spp. J Mushroom Sci Prod 2004;2:4-9.
  12. Asati A, Pichhode M, Nikhil K. Effect of heavy metals on plants: an overview. IJAIEM 2016;5:56-66.
  13. Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J. Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 2000;147:367-79. https://doi.org/10.1046/j.1469-8137.2000.00694.x
  14. Cejpkova J, Gryndler M, Hrselova H, Kotrba P, Randa Z, Synkova I, Borovicka J. Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut 2016;218:176-85. https://doi.org/10.1016/j.envpol.2016.08.009
  15. Ndimele CC, Ndimele PE, Chukwuka KS. Accumulation of heavy metals by wild mushrooms in Ibadan, Nigeria. J Health Pollut 2017;7:26-30. https://doi.org/10.5696/2156-9614-7.16.26
  16. Demirbas A. Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chem 2000;68:415-9. https://doi.org/10.1016/S0308-8146(99)00210-1
  17. Walter M, Frampton CM, Boyd-Wilson KS, Harris-Virgin P, Waipara W. Agrichemical impact on growth and survival of non-target apple phyllosphere microorganisms. Can J Microbiol 2007;53:45-55. https://doi.org/10.1139/w06-093
  18. Zhang B, Bai Z, Hoefel D, Tang L, Wang X, Li B, Li Z, Zhuang G. The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Sci Total Environ 2009;407:1915-22. https://doi.org/10.1016/j.scitotenv.2008.11.049
  19. Sanders P, Swan G. Emamectin benzoate. In: Joint FAO/WHO Expert Committee on Food Additives, editors. Residue evaluation of certain veterinary drugs. Rome: Food and Agriculture Organization of the United Nations; 2014. p. 23-37.
  20. Mistretta P, Durkin PR. Emamectin benzoate: human health and ecological risk assessment. Manlius: Syracuse Environmental Research Associates; 2010.