DOI QR코드

DOI QR Code

First Report of Six Trichoderma Species Isolated from Freshwater Environment in Korea

  • Goh, Jaeduk (Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Nam, Bora (Department of Biology, Kunsan National University) ;
  • Lee, Jae Sung (Department of Biology, Kunsan National University) ;
  • Mun, Hye Yeon (Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Oh, Yoosun (Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, Chonnam National University) ;
  • Chung, Namil (Fungal Resources Research Division, Nakdonggang National Institute of Biological Resources) ;
  • Choi, Young-Joon (Department of Biology, Kunsan National University)
  • Received : 2018.07.05
  • Accepted : 2018.08.01
  • Published : 2018.09.01

Abstract

Trichoderma (Hypocreaceae) is one of the most ubiquitous genera worldwide. This genus has an excellent ability to adapt to diverse environments, even under poor nutritional conditions, such as in freshwater. However, little is known about the diversity of Trichoderma species in freshwater environments. In this study, we isolated diverse fungal strains from algae, plant litter, and soil sediment in streams in Korea. The strains were identified based on molecular phylogenetic analyses of internal transcribed spacer (ITS) rDNA and translation elongation factor 1 ($TEF1{\alpha}$) sequences. We also investigated their morphological characteristics by microscopic observation and determination of cultural features on different media. As a result, six Trichoderma species were found in Korea: T. afroharzianum, T. capillare, T. guizhouense, T. paraviridescens, T. reesei, and T. saturnisporum. Interestingly, T. paraviridescens showed both cellulose activity and hypoxia stress tolerance phenotypes, indicating its role as a decomposer in freshwater ecosystems. Our study revealed that freshwater environment could be a good candidate for investigating the species diversity of Trichoderma.

Keywords

References

  1. Medeiros AO, Pascoal C, Graca MA. Diversity and activity of aquatic fungi under low oxygen conditions. Freshw Biol 2009;54:142-9. https://doi.org/10.1111/j.1365-2427.2008.02101.x
  2. Sanchez-Andrea I, Rodriguez N, Amils R, Sanz JL. Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. Appl Environ Microbiol 2011;77:6085-93. https://doi.org/10.1128/AEM.00654-11
  3. Bissett J, Gams W, Jaklitsch W, Samuels GJ. Accepted Trichoderma names in the year 2015. IMA Fungus 2015;6:263-95. https://doi.org/10.5598/imafungus.2015.06.02.02
  4. Kirk PM, Cannon PF, Minter D, Stalpers JA, Ainsworth GC, Bibsy GR. Ainsworth & Bisby's dictionary of the fungi. 10th ed. Wallingford: CAB International; 2008.
  5. Kredics L, Hatvani L, Naeimi S, Kormoczi P, Manczinger L, Vagvolgyi C, Druzhinina I. Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VK, Schmill M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and biology of Trichoderma. Amsterdam: Elsevier; 2014. p. 3-24.
  6. Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M. Trichoderma: biology and applications. Wallingford: CAB International; 2013.
  7. Samuels GJ. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 2006;96:195-206. https://doi.org/10.1094/PHYTO-96-0195
  8. Howell CR. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 2006;96:178-80. https://doi.org/10.1094/PHYTO-96-0178
  9. Jang S, Jang Y, Kim CW, Lee H, Hong JH, Heo YM, Lee YM, Lee DW, Lee HB, Kim JJ. Five new records of soil-derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology 2017;45:1-8. https://doi.org/10.5941/MYCO.2017.45.1.1
  10. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315-22.
  11. Hoyos-Carvajal L, Orduz S, Bissett J. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 2009;46:615-31. https://doi.org/10.1016/j.fgb.2009.04.006
  12. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005;97:84-98.
  13. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772-80. https://doi.org/10.1093/molbev/mst010
  14. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 2008;9:212. https://doi.org/10.1186/1471-2105-9-212
  15. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  16. Jiang Y, Wang JL, Chen J, Mao LJ, F XX, Zhang CL, Lin FC. Trichoderma biodiversity of agricultural fields in East China reveals a gradient distribution of species. PLoS One 2016;11:e0160613. https://doi.org/10.1371/journal.pone.0160613
  17. Druzhinina IS, Komon-Zelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP. Molecular phylogeny and species delimitation in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 2012;49:358-68. https://doi.org/10.1016/j.fgb.2012.02.004
  18. Do Vale LH, Filho EX, Miller RN, Ricart CA, de Sousa MV. Cellulase systems in Trichoderma : an overview. In: Gupta VK, Schmill M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and biology of Trichoderma. Amsterdam: Elsevier; 2014. p. 229-44.
  19. Chaverri P, Samuels GJ. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 2013;67:2823-37.
  20. Druzhinina IS, Kubicek CP, Komon-Zelazowska M, Mulaw TB, Bissett J. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 2010;10:94. https://doi.org/10.1186/1471-2148-10-94
  21. Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015;107:558-90. https://doi.org/10.3852/14-147
  22. Samuels GJ, Ismaiel A, Mulaw TB, Szakacs G, Druzhinina IS, Kubicek CP, Jaklitsch WM. The Longibrachiatum clade of Trichoderma: a revision with new species. Fungal Divers 2012;55:77-108. https://doi.org/10.1007/s13225-012-0152-2
  23. Wuczkowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger H, Kubicek CP. Species pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. Microbiol Res 2003;158:125-33. https://doi.org/10.1078/0944-5013-00193
  24. Jaklitsch WM, Samuels GJ, Ismaiel A, Voglmayr H. Disentangling the Trichoderma viridescens complex. Persoonia 2013;31:112-46. https://doi.org/10.3767/003158513X672234
  25. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2009;2:19. https://doi.org/10.1186/1754-6834-2-19
  26. Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP. The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud Mycol 1998;41:1-54.
  27. Dianez Martinez F, Santos M, Carretero F, Marin F. Trichoderma saturnisporum, a new biological control agent. J Sci Food Agric 2016;96:1934-44. https://doi.org/10.1002/jsfa.7301