DOI QR코드

DOI QR Code

Discovery of Two Chrysosporium Species with Keratinolytic Activity from Field Soil in Korea

  • Gurung, Sun Kumar (Division of Biological Resource Science, Kangwon National University) ;
  • Adhikari, Mahesh (Division of Biological Resource Science, Kangwon National University) ;
  • Kim, Sang Woo (Division of Biological Resource Science, Kangwon National University) ;
  • Bazie, Setu (Division of Biological Resource Science, Kangwon National University) ;
  • Kim, Hyun Seung (Division of Biological Resource Science, Kangwon National University) ;
  • Lee, Hyun Goo (Division of Biological Resource Science, Kangwon National University) ;
  • Kosol, San (Division of Biological Resource Science, Kangwon National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Lee, Youn Su (Division of Biological Resource Science, Kangwon National University)
  • Received : 2017.09.26
  • Accepted : 2018.08.02
  • Published : 2018.09.01

Abstract

In an ongoing survey of Korean indigenous fungi, two fungal strains (KNU16-74 and KNU16-99) belonging to the genus Chrysosporium were isolated from field soil in Gyeongnam, Korea. Morphological characterization and phylogenetic analysis using sequence of the internal transcribed spacer regions were carried out to confirm its precise identification. These strains were identified as Chrysosporium indicum (KNU16-74) and Chrysosporium fluviale (KNU16-99). To examine the keratin degradation efficiency of these two fungal species, human hair strands were incubated with fungus culture. Results revealed that these two fungal species have the ability to degrade keratin substrate. This is the first report of these two species in Korea.

Keywords

References

  1. Oorschot CAN Van. A revision of Chrysosporium and allied genera. Stud Mycol. 1980;20:1-89.
  2. Hughes SJ. Revisiones hyphmycetum aliquot cum appendice de nominibus rejiciendis. Can J Bot. 1958;36:727-836. https://doi.org/10.1139/b58-067
  3. Kornillowicz T. Occurrence of geophilic keratinophilic fungi in bottom sediments of various trophicity. Acta Mycol. 2014;28:171-184. https://doi.org/10.5586/am.1993.018
  4. Ulfig K, Guarro J, Cano J, et al. The occurrence of keratinolytic fungi in sediments of the river Tordera. FEMS Microbiol Ecol. 2006;22:111-117. https://doi.org/10.1111/j.1574-6941.1997.tb00362.x
  5. Hubalek Z. Keratinophilic fungi associated with free-living mammals and birds. In: Kushwaha RKS, Guarro J, editors. Biology of dermatophytes and other keratinophilic fungi. Bilbao, Spain: Revista Iberoamericana de Micologia; 2000. p. 93-103.
  6. Mandeel Q, Nardoni S, Mancianti F. Keratinophilic fungi on feathers of common clinically healthy birds in Bahrain. Mycoses. 2011;54:71-77. https://doi.org/10.1111/j.1439-0507.2009.01755.x
  7. Sigler L, Carmichael JW. Taxonomy of Malbranchea and some other hyphomycetes with arthroconidia. Mycotaxon. 1976;4:349-488.
  8. Currah RS. Taxonomy of the Onygenales: Arthodermataceae, Gymnoascaceae, Myxotrichaceae and Onygenaceae. Mycotaxon. 1985;24:1-216.
  9. Carmichael JW. Chrysosporium and some other aleuriosporic hyphomycetes. Can J Bot . 1962;40:1137-1173. https://doi.org/10.1139/b62-104
  10. Zhang Y, Chen WH, Zeng G, et al. Two new Chrysosporium (Onygenaceae, Onygenales) from China. Phytotaxa. 2016;270:210-216. https://doi.org/10.11646/phytotaxa.270.3.5
  11. Mitola G, Escalona F, Salas R, et al. Morphological characterization of in-vitro human hair keratinolysis, produced by identified wild strains of Chrysosporium species. Mycopathologia. 2002;156:163-169.
  12. Liang JD, Han YF, Liang ZQ. A study and application progress in a group of keratinophilic fungi, the genus Chrysosporium. J Fungal Res. 2007;5:113-118.
  13. Liu B, Zhang J, Li B, et al. Expression and characterization of extreme alkaline, oxidation-resistant keratinase from Bacillus lincheniformis in recombinant Bacillus subtilis WB600 expression system and its application in wool fiber processing. World J Microbiol Biotechnol. 2013;29:825-832. https://doi.org/10.1007/s11274-012-1237-5
  14. Silva LAD, Macedo AJ, Termignoni C. Production of keratinase by Bacillus subtilis S14. Ann Microbiol. 2014;64:1725-1733. https://doi.org/10.1007/s13213-014-0816-0
  15. Hong SJ, Park GS, Jung BK, et al. Isolation, identification, and characterization of a keratin-degrading bacterium Chryseobacterium sp. P1-3. J Appl Biol Chem. 2015;58:247-251. https://doi.org/10.3839/jabc.2015.039
  16. Kushwaha RKS. The genus Chrysosporium, its physiology and biotechnological potential. In: Kushwaha RKS, Guarro J, editors. Biology of dermatophytes and other keratinophilic fungi. Bilbao, Spain: Revista Iberoamericana de Micologia; 2000. p. 66-76.
  17. Blyskal B. Fungi utilizing keratinous substrates. Int Biodeterior Biodegradation. 2009;63:631-653. https://doi.org/10.1016/j.ibiod.2009.02.006
  18. Maruthi AY, Lakshimi AK, Rao RS, et al. Degradation of feather and hair by Chrysosporium tropicum: a potent keratinophilic fungus. African J Biotechnol. 2011;10:3579-3584.
  19. Nwadiaro PO, Chuku Onyimba IA, et al. Keratin degradation by Penicillium purpurogenum isolated from Tannery soil in Jos, Nigeria. BMRJ. 2015;8:358-366. https://doi.org/10.9734/BMRJ/2015/16339
  20. Lange L, Huang Y, Busk PK. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance. Appl Microbiol Biotechnol. 2016;100:2083-2096. https://doi.org/10.1007/s00253-015-7262-1
  21. Davet P, Rouxel F. Detection and isolation of soil fungi. Enfield, USA: Science Publishers; 2000.
  22. Samson RA, Houbraken J, Thrane U, et al. Food and indoor fungi. Webmaster Laboratory Manual Series. Utrecht: CBS-KNAW Fungal Diversity Center; 2010.
  23. Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London: Eyre Methuen; 1978.
  24. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editor. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315-322.
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-120. https://doi.org/10.1007/BF01731581
  26. Tamura K, Stecher G, Peterson D, Filipski A, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  27. Mariana C, Constantinescu AD, Alexandrescu E, et al. Degradation of keratin substrate by keratinolytic fungi. Electron J Biotechnol. 2017;28:101-112. https://doi.org/10.1016/j.ejbt.2017.05.007
  28. Kornillowicz T. Methods for determining keratinoytic activity of saprophytic fungi. Acta Mycol. 2014;29:169-178. https://doi.org/10.5586/am.1994.017
  29. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-275.
  30. Chester CGC, Mathison GE. The decomposition of wool keratin by Keratinomyces ajelloi. Med Mycol. 1963;2:225-237. https://doi.org/10.1080/00362176385190381
  31. Garg AK. Isolation of dermatophytes and other keratinophilic fungi from soil in India. Sabouraudia. 1966;4:259-264. https://doi.org/10.1080/00362176685190571
  32. Vidal P, Sanchez JM, Milan D, et al. Chrysosporium fluviale, a new keratinophilic species from river sediments. Mycol Res. 2000;104:244-250. https://doi.org/10.1017/S0953756299001082
  33. Kiss L. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci USA. 2012;109:E1811. https://doi.org/10.1073/pnas.1207143109
  34. Liang J, Han Y, Du W, et al. Chrysosporium linfenense: a new Chrysosporium species with keratinolytic activity. Mycotaxon. 2009;110:65-71. https://doi.org/10.5248/110.65
  35. Vidal P, Valmaseda M, Vinuesa MA, et al. Two new species of Chrysosporium. Stud Mycol. 2002;47:199-209.
  36. Labuda R, Nadova L, Tomas VEN. First record of Chrysosporium europae, Ch. fluviale and Ch. minutisporosum in Slovakia. Biologia. 2008;63:38-39.
  37. Yang F, Zhang Y, Rheinstadter MC. The structure of people's hair. Peer J. 2014;2:e619. https://doi.org/10.7717/peerj.619
  38. Deshmukh SK, Agrawal SC. In vitro degradation of human hair by some keratinophilic fungi. Mykosen. 1982;25:454-458.
  39. Desmukh SK, Verekar SA. Isolation of keratinophilic fungi from selected soils of Sanjay Gandhi National Park, Mumbai (India). J Mycol Med. 2014;24:318-327.
  40. Apinis AE. Relationships of certain keratinophilic Plectascales. Mycopathol Mycol Appl. 1968;35:97-104. https://doi.org/10.1007/BF02049572

Cited by

  1. Impact of the Cultivation Technique on the Production of Secondary Metabolites by Chrysosporium lobatum TM-237-S5, Isolated from the Sponge Acanthella cavernosa vol.17, pp.12, 2019, https://doi.org/10.3390/md17120678
  2. Keratinases as Versatile Enzymatic Tools for Sustainable Development vol.11, pp.12, 2018, https://doi.org/10.3390/biom11121900