DOI QR코드

DOI QR Code

Multivariate Analysis of Variation of Growth and Quality Characteristics in Colored Rice Germplasm

유색미 도입 유전자원의 생육 및 품질특성 변이 다변량 분석

  • Received : 2018.05.17
  • Accepted : 2018.07.06
  • Published : 2018.09.30

Abstract

The aim of this study was to evaluate the variation of growth and quality characteristics in colored rice from 178 accessions and to develop useful, basic rice breeding data by classifying these germplasm characteristics via principal component (PC) analysis. The coefficient of variation of the 178colored rice accessions were the highest for panicle length (PL) and protein contents, followed by length-width ratio (LWR), 1000-grain weight (TGW), culm length (CL), and amylose contents, whereas the lowest was for the number of panicles per hill (NP), which is a yield component. The results from the PC analysis exhibited eigenvalues and contributions respective to each PC as follows: PC1, 2.06 and 29.49%; PC2, 1.31 and 18.75%; PC3, 1.21 and 17.36%; PC4, 1.01 and 14.38%. The eigenvalues of four PCs were over 1.0, and their cumulative contributions were 79.98%, which completes the necessary condition for evaluation of the 178 colored rice accessions. Cluster analysis showed cluster I as the largest, which included 79 accessions, while clusters II, III, IV, V, VI, and VII comprised 46, 19, 13, 4, 8, and 9 accessions, respectively. Moreover, dark brown accessions were dispersed in clusters I and II, and many resources of purple seed coat color were found in clusters V, VI, and VII. Particularly, cluster V had resources of only black and purple seed coat colors. Resources of cluster VII were found to have a relatively small average CL, PL, and LWR; notably, cluster V had the smallest average TGW, and cluster IV the lowest NP but the highest TGW. Finally, considering the yield potential, growth characteristics, heading stage, and color during breeding of colored rice, we obtained the following conclusions: cluster VII is suitable for breeding of colored rice; cross breeding among clusters I, II, and VII has a high yield potential; and it is possible to produce a superior color by cross breeding plants from cluster V and VI.

우리나라에 도입된 유색미 유전자원 178점의 생육 및 품질특성 변이를 평가하고 주성분 분석을 통해 유전자원을 분류하여 벼 육종의 기초자료로 활용하고자 연구를 수행하였다. 1. 도입 유색미 유전자원 178점의 변이계수는 이삭길이, 단백질 함량이 가장 높았고, 장폭비, 천립중, 간장, 아밀로스 함량 순으로 높았고, 수량구성요소인 주당수수가 가장 낮았다. 2. 유색미 유전자원의 생육 및 품질특성에 대한 주성분 분석 결과, 각 주성분의 고유값과 기여율은 제1주성분 2.06개, 29.49%, 제2주성분 1.31개, 18.75%, 제3주성분 1.21개, 17.36% 및 제4주성분 1.01개, 14.38%로 4개의 주성분 고유값이 1 이상이며, 누적기여율이 79.98%로 도입 유색미 유전자원 평가가 가능하였다. 3. 군집분석 결과, I군집은 79자원이 포함되었으며, II, III, IV, V, VI, VII군집은 각각 46자원, 19자원, 13자원, 4자원, 8자원 및 9자원이 분포하였다. I군집, II군집에는 짙은갈색의 자원이 많이 분포되었고, V군집, VI군집, VII군집에는 자색 계열의 종피색을 가진 자원이 많았다. 특히, V군집은 암자색과 자색만으로 자색계열의 종피색을 가진 자원만이 포함되어 있다. VII군집에서 간장, 이삭길이, 장폭비가 다른 군집에 비해 평균값이 적었으며, V군집에서는 천립중 평균이 다른 군집에 비해 가장 낮았다. IV군집에서는 평균 주당수수 가장 낮았으나, 천립중 평균은 가장 높게 나타났다.

Keywords

References

  1. Choi, H. G. 2010. Assessment of major physicochemical components on waxy corn hybrids (Zea mays L.). Department of Agronomy, Graduate School, Chungnam National University. PhD thesis. p. 123.
  2. Ennis, D. M., H. Boelens, H. Haring, and P. Bowman. 1982. Multivariate analysis in sensory evaluation. Food Technology. pp. 83-90.
  3. Ghosh, J. P., D. Ghosh, and P. R. Choudhury. 2014. An assessment of genetic relatedness between soybean [Glycine max (L.) Merrill] cultivars using SSR markers. American Journal of Plant Sciences. 5(20) : 3089-3096. https://doi.org/10.4236/ajps.2014.520325
  4. Han, O., J. Abe, and Y. Shimamoto. 1999. Genetic diversity of soybean landraces in Korea. Korean J. Crop Sci. 44(3) : 256-262.
  5. Janmohammadi, M., Z. Movahedi, and N. Sabaghnia. 2014. Multivariate statistical analysis of some traits of bread wheat for breeding under rainfed conditions. Journal of Agricultural Sciences. 59(1) : 1-14.
  6. Juliano B. O. 1985. Rice : Chemistry and Technology. AACC second edition. p. 757.
  7. Kang, H. C. 2013. A guide on the use of factor analysis in the assessment of construct validity. J. Korean Acad. Nurs. 43(5) : 587-594. https://doi.org/10.4040/jkan.2013.43.5.587
  8. Kim, D. Y., M. K. Yoon, J. H. Kwak, T. I. Kim, and J. H. Kim. 2009. Classification of strawberry germplasms based on horticultural traits and principal component analysis. Korean. J. Hort Sci. Technol. 27(4) : 636-643.
  9. Kim, E. O., J. H. Oh, K. T. Lee, J. G. Im, S. S. Kim, H. S. Suh, and S. W. Choi. 2008. Chemical compositions and antioxidant activity of the colored rice cultivar. Korean. J. Food Preserv. 15(1) : 118-124.
  10. Kim, M. S., H. J. Lee, D. A. Yu, J. Y. Song, M. Nino, F. Nogoy, J. Kim, Y. S. So, and Y. G. Cho. 2016. Classification of Korean rice varieties based on agro-morphological traits. Korean J. Breed. Sci. 48(3) : 254-270. https://doi.org/10.9787/KJBS.2016.48.3.254
  11. Kim, S. H., J. W. Jung, J. K. Moon, S. H. Woo, Y. G. Cho, S. K. Jong, and H. S. Kim. 2006. Genetic diversity and relationship by SSR markers of Korean soybean cultivars. Korean J. Crop Sci. 51(3) : 248-258.
  12. Kwak, T. S. 2011. Varietal variation of grain yield and physico-chemical properties related to grain quality of the major rice varieties by the released year. Korean J. Intl. Agri. 23(1) : 109-114.
  13. Kwak, T. S. and J. H. Yeo. 2004. Varietal variation of yield related and growth analysis related characters in rice based on ecological traits. Korean J. Intl. Agri. 16(2) : 143-149.
  14. Malik, M. F. A. 2011. Evaluation of genetic diversity in soybean (Glycine max (L.) genotypes based on agronomic and biochemical traits. Quaid-i-Azam University PhD thesis. p. 170.
  15. Nielsen, J. P. and L. Munck. 2003. Evaluation of malting barley quality using exploratory data analysis. I. Extraction of information from micromalting data of spring and winter. barley. J. Cereal Sci. 38 : 173-180. https://doi.org/10.1016/S0733-5210(03)00023-7
  16. Park, J. Y., K. J. Sa, K. J. Park, and J. K. Lee. 2014. Analysis of morphological characteristics for normal maize inbred lines. Korean J. Crop Sci. 59(3) : 312-318. https://doi.org/10.7740/kjcs.2014.59.3.312
  17. Reddy, V. S., K. V. Goud, R. Sharma, and A. R. Reddy. 1994. Ultraviolet-B-Responsive anthocyanin production in a rice cultivar 1s associated with a specific phase of phenylalanine ammonia lyase biosynthesis. Plant Physiol. 105 : 1059-1066. https://doi.org/10.1104/pp.105.4.1059
  18. Rural Development Administration, National Institute of Crop Science. 2003. Evaluate the quality and taste of rice. Suwon, Korea.
  19. Rural Development Administration. 2006. Evaluation and management of Rice germplasm. Suwon, Korea. p. 111.
  20. Ryu, S. N. 2013. Grain of new large-grain pigmented rice variety, 'Daeripjamibyeo'. Korean J. Crop Sci. 58(2) : 185-189. https://doi.org/10.7740/kjcs.2013.58.2.185
  21. Ryu, S. N. 2014. Science of functional rice. KNOU Press. p. 235.
  22. Ryu, S. N. 2016. Grain quality of a black rice variety 'Pareunsuperjami'. Korean J. Breed. Sci. 48(4): 547-552. https://doi.org/10.9787/KJBS.2016.48.4.547
  23. Ryu, S. N., S. Z. Park, and C. T. Ho. 1998. High performance liquid chromatographic determination of anthocyanin pigments in some varieties of black rice. Journal of Food and Drug analysis 6(4) : 729-736.
  24. Song, Y. C., J. H. Cho, J. Y. Lee, J. H. Lee, S. H. Oh, S. I. Han, K. H. Jung, W. D. Seo, W. H. Hwang, K. C. Jang, N. B. Park, D. S. Park, S. Y. Kim, H. W. Kang, and H. D. Lee. 2017. Antioxidant functional and red pericarp rice 'Geonganghongmi'. Korean J. Breed. Sci. 49(1): 23-30. https://doi.org/10.9787/KJBS.2017.49.1.23