DOI QR코드

DOI QR Code

Functional Implications of HMG-CoA Reductase Inhibition on Glucose Metabolism

  • Han, Ki Hoon (Department of Internal Medicine, College of Medicine Ulsan University, Asan Medical Center)
  • 투고 : 2018.09.02
  • 심사 : 2018.09.27
  • 발행 : 2018.11.30

초록

HMG-CoA reductase inhibitors, i.e. statins, are effective in reducing cardiovascular disease events but also in cardiac-related and overall mortality. Statins are in general well-tolerated, but currently the concerns are raised if statins may increase the risk of new-onset diabetes mellitus (NOD). In this review, the possible effects of statins on organs/tissues being involved in glucose metabolism, i.e. liver, pancreas, adipose tissue, and muscles, had been discussed. The net outcome seems to be inconsistent and often contradictory, which may be largely affected by in vitro experimental settings or/and in vivo animal conditions. The majority of studies point out statin-induced changes of regulations of isoprenoid metabolites and cellassociated cholesterol contents as predisposing factors related to the statin-induced NOD. On the other hand, it should be considered that dysfunctions of isoprenoid pathway and mitochondrial ATP production and the cholesterol homeostasis are already developed under (pre)diabetic and hypercholesterolemic conditions. In order to connect the basic findings with the clinical manifestation more clearly, further research efforts are needed.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea, Asan Medical Center

참고문헌

  1. Endo A, Hasumi K. Biochemical aspect of HMG CoA reductase inhibitors. Adv Enzyme Regul 1989;28:53-64. https://doi.org/10.1016/0065-2571(89)90063-0
  2. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014;63:2889-934. https://doi.org/10.1016/j.jacc.2013.11.002
  3. Augustin R. The protein family of glucose transport facilitators: it's not only about glucose after all. IUBMB Life 2010;62:315-33.
  4. Nordlie RC, Foster JD, Lange AJ. Regulation of glucose production by the liver. Annu Rev Nutr 1999;19:379-406. https://doi.org/10.1146/annurev.nutr.19.1.379
  5. Keembiyehetty C, Augustin R, Carayannopoulos MO, et al. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol 2006;20:686-97. https://doi.org/10.1210/me.2005-0010
  6. McVie-Wylie AJ, Lamson DR, Chen YT. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility. Genomics 2001;72:113-7. https://doi.org/10.1006/geno.2000.6457
  7. Elliott KR, Bate AJ, Craik JD. Specificity of the rat hepatocyte monosaccharide transporter. Int J Biochem 1984;16:1251-3. https://doi.org/10.1016/0020-711X(84)90224-6
  8. Leturque A, Brot-Laroche E, Le Gall M. GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab 2009;296:E985-92. https://doi.org/10.1152/ajpendo.00004.2009
  9. Fraulob JC, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet. Clin Sci (Lond) 2012;123:259-70. https://doi.org/10.1042/CS20110373
  10. Tappy L, Dussoix P, Iynedjian P, et al. Abnormal regulation of hepatic glucose output in maturity-onset diabetes of the young caused by a specific mutation of the glucokinase gene. Diabetes 1997;46:204-8. https://doi.org/10.2337/diab.46.2.204
  11. Steele AM, Wensley KJ, Ellard S, et al. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: observational case control studies. PLoS One 2013;8:e65326. https://doi.org/10.1371/journal.pone.0065326
  12. Iynedjian PB, Pilot PR, Nouspikel T, et al. Differential expression and regulation of the glucokinase gene in liver and islets of Langerhans. Proc Natl Acad Sci U S A 1989;86:7838-42. https://doi.org/10.1073/pnas.86.20.7838
  13. Hegarty BD, Bobard A, Hainault I, Ferre P, Bossard P, Foufelle F. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc Natl Acad Sci U S A 2005;102:791-6. https://doi.org/10.1073/pnas.0405067102
  14. Kim TH, Kim H, Park JM, et al. Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J Biol Chem 2009;284:15071-83. https://doi.org/10.1074/jbc.M109.006742
  15. Pramfalk C, Parini P, Gustafsson U, Sahlin S, Eriksson M. Effects of high-dose statin on the human hepatic expression of genes involved in carbohydrate and triglyceride metabolism. J Intern Med 2011;269:333-9. https://doi.org/10.1111/j.1365-2796.2010.02305.x
  16. O'Doherty RM, Lehman DL, Telemaque-Potts S, Newgard CB. Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes 1999;48:2022-7. https://doi.org/10.2337/diabetes.48.10.2022
  17. Chakera AJ, Steele AM, Gloyn AL, et al. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care 2015;38:1383-92. https://doi.org/10.2337/dc14-2769
  18. Schonewille M, de Boer JF, Mele L, et al. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice. J Lipid Res 2016;57:1455-64. https://doi.org/10.1194/jlr.M067488
  19. Tsai AC, Dyer IA. Influence of dietary cholesterol and cholic acid on liver carbohydrate metabolism enzymes in rats. J Nutr 1973;103:93-101. https://doi.org/10.1093/jn/103.1.93
  20. Miao J, Haas JT, Manthena P, et al. Hepatic insulin receptor deficiency impairs the SREBP-2 response to feeding and statins. J Lipid Res 2014;55:659-67. https://doi.org/10.1194/jlr.M043711
  21. Naples M, Federico LM, Xu E, Nelken J, Adeli K. Effect of rosuvastatin on insulin sensitivity in an animal model of insulin resistance: evidence for statin-induced hepatic insulin sensitization. Atherosclerosis 2008;198:94-103. https://doi.org/10.1016/j.atherosclerosis.2007.11.003
  22. Lalli CA, Pauli JR, Prada PO, et al. Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet. Metabolism 2008;57:57-65. https://doi.org/10.1016/j.metabol.2007.07.021
  23. Gotoh S, Negishi M. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Sci Rep 2015;5:14076. https://doi.org/10.1038/srep14076
  24. Black RN, Ennis CN, Young IS, Hunter SJ, Atkinson AB, Bell PM. The peroxisome proliferator-activated receptor alpha agonist fenofibrate has no effect on insulin sensitivity compared to atorvastatin in type 2 diabetes mellitus; a randomised, double-blind controlled trial. J Diabetes Complications 2014;28:323-7. https://doi.org/10.1016/j.jdiacomp.2014.01.001
  25. Szendroedi J, Anderwald C, Krssak M, et al. Effects of high-dose simvastatin therapy on glucose metabolism and ectopic lipid deposition in nonobese type 2 diabetic patients. Diabetes Care 2009;32:209-14. https://doi.org/10.2337/dc08-1123
  26. Zhao W, Zhao SP. Different effects of statins on induction of diabetes mellitus: an experimental study. Drug Des Devel Ther 2015;9:6211-23.
  27. Coppieters KT, Wiberg A, Amirian N, Kay TW, von Herrath MG. Persistent glucose transporter expression on pancreatic beta cells from longstanding type 1 diabetic individuals. Diabetes Metab Res Rev 2011;27:746-54. https://doi.org/10.1002/dmrr.1246
  28. Liang Y, Cushman SM, Whitesell RR, Matschinsky FM. GLUT1 is adequate for glucose uptake in GLUT2-deficient insulin-releasing ${\beta}$-cells. Horm Metab Res 1997;29:255-60. https://doi.org/10.1055/s-2007-979032
  29. Fex M, Nicholas LM, Vishnu N, et al. The pathogenetic role of ${\beta}$-cell mitochondria in type 2 diabetes. J Endocrinol 2018;236:R145-59. https://doi.org/10.1530/JOE-17-0367
  30. Zhang Y, Feng F, Chen T, Li Z, Shen QW. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. J Ethnopharmacol 2016;192:256-63. https://doi.org/10.1016/j.jep.2016.07.002
  31. Hao M, Head WS, Gunawardana SC, Hasty AH, Piston DW. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007;56:2328-38. https://doi.org/10.2337/db07-0056
  32. The Human Protein Atlas. Gene information: LDLR [Internet]. [place unknown]: The Human Protein Atlas; [cited 2018 Aug]. Available from https://www.proteinatlas.org/ENSG00000130164-LDLR/tissue.
  33. Ivarsson R, Quintens R, Dejonghe S, et al. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 2005;54:2132-42. https://doi.org/10.2337/diabetes.54.7.2132
  34. Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 2000;49:1751-60. https://doi.org/10.2337/diabetes.49.11.1751
  35. MacDonald MJ, Longacre MJ, Langberg EC, et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 2009;52:1087-91. https://doi.org/10.1007/s00125-009-1319-6
  36. Lupi R, Marselli L, Dionisi S, et al. Improved insulin secretory function and reduced chemotactic properties after tissue culture of islets from type 1 diabetic patients. Diabetes Metab Res Rev 2004;20:246-51. https://doi.org/10.1002/dmrr.460
  37. Anello M, Lupi R, Spampinato D, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 2005;48:282-9. https://doi.org/10.1007/s00125-004-1627-9
  38. Brand MD, Parker N, Affourtit C, Mookerjee SA, Azzu V. Mitochondrial uncoupling protein 2 in pancreatic ${\beta}$-cells. Diabetes Obes Metab 2010;12 Suppl 2:134-40. https://doi.org/10.1111/j.1463-1326.2010.01264.x
  39. Yang C, Zhao D, Liu G, et al. Atorvastatin attenuates metabolic remodeling in ischemic myocardium through the downregulation of UCP2 expression. Int J Med Sci 2018;15:517-27. https://doi.org/10.7150/ijms.22454
  40. Wang L, Lin R, Guo L, Hong M. Rosuvastatin relieves myocardial ischemia/reperfusion injury by upregulating PPAR-$\gamma$ and UCP2. Mol Med Rep 2018;18:789-98.
  41. Urbano F, Bugliani M, Filippello A, et al. Atorvastatin but not pravastatin impairs mitochondrial function in human pancreatic islets and rat ${\beta}$-cells. Direct effect of oxidative stress. Sci Rep 2017;7:11863. https://doi.org/10.1038/s41598-017-11070-x
  42. Yaluri N, Modi S, Lopez Rodriguez M, et al. Simvastatin impairs insulin secretion by multiple mechanisms in MIN6 cells. PLoS One 2015;10:e0142902. https://doi.org/10.1371/journal.pone.0142902
  43. Salunkhe VA, Elvstam O, Eliasson L, Wendt A. Rosuvastatin treatment affects both basal and glucose-induced insulin secretion in INS-1 832/13 cells. PLoS One 2016;11:e0151592. https://doi.org/10.1371/journal.pone.0151592
  44. Zaki NM. Strategies for oral delivery and mitochondrial targeting of CoQ10. Drug Deliv 2016;23:1868-81.
  45. Chew GT, Watts GF. Coenzyme Q10 and diabetic endotheliopathy: oxidative stress and the 'recoupling hypothesis'. QJM 2004;97:537-48. https://doi.org/10.1093/qjmed/hch089
  46. Tomita T. Apoptosis in pancreatic ${\beta}$-islet cells in Type 2 diabetes. Bosn J Basic Med Sci 2016.16:162-79.
  47. Sadighara M, Amirsheardost Z, Minaiyan M, et al. Toxicity of atorvastatin on pancreas mitochondria: a justification for increased risk of diabetes mellitus. Basic Clin Pharmacol Toxicol 2017;120:131-7. https://doi.org/10.1111/bcpt.12656
  48. Chen ZY, Liu SN, Li CN, et al. Atorvastatin helps preserve pancreatic ${\beta}$ cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis 2014;13:98. https://doi.org/10.1186/1476-511X-13-98
  49. Otani M, Yamamoto M, Harada M, Otsuki M. Effect of long- and short-term treatments with pravastatin on diabetes mellitus and pancreatic fibrosis in the Otsuka-Long-Evans-Tokushima fatty rat. Br J Pharmacol 2010;159:462-73. https://doi.org/10.1111/j.1476-5381.2009.00548.x
  50. Lorza-Gil E, Salerno AG, Wanschel AC, et al. Chronic use of pravastatin reduces insulin exocytosis and increases ${\beta}$-cell death in hypercholesterolemic mice. Toxicology 2016;344-346:42-52. https://doi.org/10.1016/j.tox.2015.12.007
  51. Contreras JL, Smyth CA, Bilbao G, Young CJ, Thompson JA, Eckhoff DE. Simvastatin induces activation of the serine-threonine protein kinase AKT and increases survival of isolated human pancreatic islets. Transplantation 2002;74:1063-9. https://doi.org/10.1097/00007890-200210270-00001
  52. Mohammed A, Qian L, Janakiram NB, Lightfoot S, Steele VE, Rao CV. Atorvastatin delays progression of pancreatic lesions to carcinoma by regulating PI3/AKT signaling in p48Cre/+ LSL-KrasG12D/+ mice. Int J Cancer 2012;131:1951-62. https://doi.org/10.1002/ijc.27456
  53. Favaro E, Miceli I, Bussolati B, et al. Hyperglycemia induces apoptosis of human pancreatic islet endothelial cells: effects of pravastatin on the Akt survival pathway. Am J Pathol 2008;173:442-50. https://doi.org/10.2353/ajpath.2008.080238
  54. De Meyts P. The insulin receptor and its signal transduction network. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000- [updated 2016 Apr 27; cited 2018 Aug]. Available from https://www.ncbi.nlm.nih.gov/books/NBK378978/.
  55. Jiang Z, Yu B, Li Y. Effect of three statins on glucose uptake of cardiomyocytes and its mechanism. Med Sci Monit 2016;22:2825-30. https://doi.org/10.12659/MSM.897047
  56. Li W, Liang X, Zeng Z, et al. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes. Biomed Pharmacother 2016;83:194-200. https://doi.org/10.1016/j.biopha.2016.06.029
  57. Yaluri N, Modi S, Kokkola T. Simvastatin induces insulin resistance in L6 skeletal muscle myotubes by suppressing insulin signaling, GLUT4 expression and GSK-3${\beta}$ phosphorylation. Biochem Biophys Res Commun 2016;480:194-200. https://doi.org/10.1016/j.bbrc.2016.10.026
  58. Chamberlain LH. Inhibition of isoprenoid biosynthesis causes insulin resistance in 3T3-L1 adipocytes. FEBS Lett 2001;507:357-61. https://doi.org/10.1016/S0014-5793(01)03007-1
  59. Takaguri A, Satoh K, Itagaki M, Tokumitsu Y, Ichihara K. Effects of atorvastatin and pravastatin on signal transduction related to glucose uptake in 3T3L1 adipocytes. J Pharmacol Sci 2008;107:80-9. https://doi.org/10.1254/jphs.FP0072403
  60. Khan T, Hamilton MP, Mundy DI, Chua SC, Scherer PE. Impact of simvastatin on adipose tissue: pleiotropic effects in vivo. Endocrinology 2009;150:5262-72. https://doi.org/10.1210/en.2009-0603
  61. Sahebkar A, Simental-Mendia LE, Pedone C, et al. Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials. Br J Clin Pharmacol 2016;81:807-18. https://doi.org/10.1111/bcp.12854
  62. Berk-Planken II, Hoogerbrugge N, Stolk RP, Bootsma AH, Jansen H; DALI Study Group. Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes: effect of sex and the LIPC promoter variant. Diabetes Care 2003;26:427-32. https://doi.org/10.2337/diacare.26.2.427
  63. Bey L, Maigret P, Laouenan H, Hamilton MT. Induction of lipoprotein lipase gene expression in 3T3-L1 preadipocytes by atorvastatin, a cholesterol- and triglyceride-lowering drug. Pharmacology 2002;66:51-6. https://doi.org/10.1159/000063256
  64. Ohira M, Endo K, Saiki A, et al. Atorvastatin and pitavastatin enhance lipoprotein lipase production in L6 skeletal muscle cells through activation of adenosine monophosphate-activated protein kinase. Metabolism 2012;61:1452-60. https://doi.org/10.1016/j.metabol.2012.03.010
  65. Roden M. How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 2004;19:92-6.
  66. Williams ML, Menon GK, Hanley KP. HMG-CoA reductase inhibitors perturb fatty acid metabolism and induce peroxisomes in keratinocytes. J Lipid Res 1992;33:193-208.
  67. Murthy S, Tong H, Hohl RJ. Regulation of fatty acid synthesis by farnesyl pyrophosphate. J Biol Chem 2005;280:41793-804. https://doi.org/10.1074/jbc.M504101200
  68. Chrusciel P, Sahebkar A, Rembek-Wieliczko M, et al. Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis 2016;253:194-208. https://doi.org/10.1016/j.atherosclerosis.2016.07.897
  69. Sahebkar A, Giua R, Pedone C. Impact of statin therapy on plasma leptin concentrations: a systematic review and meta-analysis of randomized placebo-controlled trials. Br J Clin Pharmacol 2016;82:1674-84. https://doi.org/10.1111/bcp.13086
  70. Sahebkar A, Giorgini P, Ludovici V, et al. Impact of statin therapy on plasma resistin and visfatin concentrations: a systematic review and meta-analysis of controlled clinical trials. Pharmacol Res 2016;111:827-37. https://doi.org/10.1016/j.phrs.2016.07.031
  71. Singh P, Zhang Y, Sharma P, et al. Statins decrease leptin expression in human white adipocytes. Physiol Rep 2018;6:e13566. https://doi.org/10.14814/phy2.13566
  72. Kralova Lesna I, Petras M, Cejkova S, et al. Cardiovascular disease predictors and adipose tissue macrophage polarization: is there a link? Eur J Prev Cardiol 2018;25:328-34. https://doi.org/10.1177/2047487317743355
  73. Abe M, Matsuda M, Kobayashi H, et al. Effects of statins on adipose tissue inflammation: their inhibitory effect on MyD88-independent IRF3/IFN-${\beta}$ pathway in macrophages. Arterioscler Thromb Vasc Biol 2008;28:871-7. https://doi.org/10.1161/ATVBAHA.107.160663
  74. Henriksbo BD, Schertzer JD. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte 2015;4:232-8. https://doi.org/10.1080/21623945.2015.1024394
  75. Henriksbo BD, Lau TC, Cavallari JF, et al. Fluvastatin causes NLRP3 inflammasome-mediated adipose insulin resistance. Diabetes 2014;63:3742-7. https://doi.org/10.2337/db13-1398
  76. Singh LP. The NLRP3 inflammasome and diabetic cardiomyopathy: editorial to: "Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model" by Beibei Luo et al. Cardiovasc Drugs Ther 2014;28:5-6. https://doi.org/10.1007/s10557-013-6501-x
  77. Luo B, Li B, Wang W, et al. Rosuvastatin alleviates diabetic cardiomyopathy by inhibiting NLRP3 inflammasome and MAPK pathways in a type 2 diabetes rat model. Cardiovasc Drugs Ther 2014;28:33-43. https://doi.org/10.1007/s10557-013-6498-1
  78. Altaf A, Qu P, Zhao Y, Wang H, Lou D, Niu N. NLRP3 inflammasome in peripheral blood monocytes of acute coronary syndrome patients and its relationship with statins. Coron Artery Dis 2015;26:409-21. https://doi.org/10.1097/MCA.0000000000000255
  79. Kong F, Ye B, Lin L, Cai X, Huang W, Huang Z. Atorvastatin suppresses NLRP3 inflammasome activation via TLR4/MyD88/NF-${\kappa}B$ signaling in PMA-stimulated THP-1 monocytes. Biomed Pharmacother 2016;82:167-72. https://doi.org/10.1016/j.biopha.2016.04.043
  80. Yu SY, Tang L, Zhao GJ, Zhou SH. Statin protects the heart against ischemia-reperfusion injury via inhibition of the NLRP3 inflammasome. Int J Cardiol 2017;229:23-4. https://doi.org/10.1016/j.ijcard.2016.11.219
  81. Wang S, Xie X, Lei T, et al. Statins attenuate activation of the NLRP3 inflammasome by oxidized LDL or $TNF{\alpha}$ in vascular endothelial cells through a PXR-dependent mechanism. Mol Pharmacol 2017;92:256-64. https://doi.org/10.1124/mol.116.108100
  82. Gazzerro P, Proto MC, Gangemi G, et al. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 2012;64:102-46. https://doi.org/10.1124/pr.111.004994

피인용 문헌

  1. Diabetogenic Action of Statins: Mechanisms vol.21, pp.6, 2019, https://doi.org/10.1007/s11883-019-0780-z
  2. Combined Administration of Metformin and Atorvastatin Attenuates Diabetic Cardiomyopathy by Inhibiting Inflammation, Apoptosis, and Oxidative Stress in Type 2 Diabetic Mice vol.9, pp.None, 2018, https://doi.org/10.3389/fcell.2021.634900
  3. Novel ketogenic diet formulation improves sucrose‐induced insulin resistance in canton strain Drosophila melanogaster vol.45, pp.9, 2021, https://doi.org/10.1111/jfbc.13907
  4. The Changes in Endogenous Metabolites in Hyperlipidemic Rats Treated with Herbal Mixture Containing Lemon, Apple Cider, Garlic, Ginger, and Honey vol.13, pp.10, 2018, https://doi.org/10.3390/nu13103573