DOI QR코드

DOI QR Code

Optimum shape and length of laterally loaded piles

  • Received : 2017.05.31
  • Accepted : 2018.08.07
  • Published : 2018.10.10

Abstract

This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

Keywords

Acknowledgement

Supported by : University of Cagliari, National Natural Science Foundation of China

References

  1. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley & Sons, Inc., New York, U.S.A.
  2. Bowles, J.E. (1996), Foundation Analysis and Design, McGraw-Hill, 5th edition, New York, U.S.A.
  3. Haftka, R.T. and Gurdal, Z. (1993), Elements of Structural Optimization, Kluwer Academic Publishers, Dordrecht, Boston, London.
  4. Fenu, L. and Serra, M. (1995), "Optimum design of beams surrounded by a Winkler's medium", Struct. Opt., 9, 132-135. https://doi.org/10.1007/BF01758831
  5. Fenu, L. (2005), "On the characteristics of optimum beams with optimum length surrounded by a Winkler's medium", Struct. Mult. Opt., 30 (3), 243-250. https://doi.org/10.1007/s00158-004-0387-y
  6. Fenu, L. and Madama, G. (2006) "Laterally loaded R/C bored piles with minimum horizontal top displacement", Proceedings of the 2nd fib Congress, Naples, Italy, June.
  7. Lan, C., Briseghella, B., Fenu, L., Xue, J. and Zordan, T. (2017), "Piles optimal shapes in integral abutment bridges", J. Traff. Transp. Eng., 4(6), 576-593.
  8. Zordan, T. and Briseghella, B. (2007), "Attainment of an integral abutment bridge through the refurbishment of a simply supported structure", Struct. Eng. Int. (SEI), 17(3), 228-234. https://doi.org/10.2749/101686607781645824
  9. Briseghella, B. and Zordan T. (2007), "Integral abutment bridge concept applied to the rehabilitation of a simply supported concrete structure", Struct. Concrete, 8(1), 25-33. https://doi.org/10.1680/stco.2007.8.1.25
  10. Zordan, T., Briseghella, B. and Lan, C. (2011), "Parametric and pushover analyses on integral abutment bridge", Eng. Struct., 33(2), 502-515. https://doi.org/10.1016/j.engstruct.2010.11.009
  11. Zordan, T., Briseghella, B. and Lan C. (2011), "Analytical formulation for limit length of integral abutment bridges", Struct. Eng. Int. (SEI), 21(3), 304-310. https://doi.org/10.2749/101686611X13049248220654
  12. Kim, W. and Laman, J.A. (2013), "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Struct. Eng. Mech., 46(1), 53-73. https://doi.org/10.12989/sem.2013.46.1.053
  13. Kim, W., Laman, J.A. and Park, J.Y. (2014), "Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects", Struct. Eng. Mech., 50(3), 305-322 https://doi.org/10.12989/sem.2014.50.3.305
  14. Far, N.E., Maleki, S. and Barghian, M. (2015), "Design of integral abutment bridges for combined thermal and seismic loads", Earthq. Struct., 9(2), 415-430. https://doi.org/10.12989/eas.2015.9.2.415
  15. Nakhaee, M. and Johari, A. (2013), "Genetic based modelling of undrained lateral load capacity of piles in cohesion soils", Glob. J. Sci. Eng. Technol., 5, 123-133.
  16. Eicher, J.A., Guan, H. and Jeng, D.S. (2002), "A parametric study of a offshore concrete pile under combined loading conditions using finite element method", Electr. J. Struct. Eng., 1.
  17. Baki, S.A., Al-Jassim, J. and Qasim, R.M. (2016), "Parametric study of the lateral behavior of cast in drilled hole piles", Am. J. Civil Eng., 4(5), 247-253.
  18. Mehndirattaa, S., Sawant, V.A. and Samadhiya, N.K. (2014), "Nonlinear dynamic analysis of laterally loaded pile", Struct. Eng. Mech., 49(4), 479-489. https://doi.org/10.12989/SEM.2014.49.4.479
  19. Gandomi, A.H. and Alavi, A.H. (2012), "A new multi-gene genetic programming approach to non-linear system modelling. Part II: Geotechnical and earthquake engineering problems", Neur. Comput. Appl., 21, 189-201. https://doi.org/10.1007/s00521-011-0735-y
  20. Imancli, G., Kahyaoglu, M.R., Ozden, G. and Kayalar, A.S. (2009), "Performance functions for laterally loaded single concrete piles in homogeneous clays", Struct. Eng. Mech., 33(4), 529-537. https://doi.org/10.12989/sem.2009.33.4.529
  21. Winkler E. (1867), Die Lehre von der Elastizität und Festigkeit, Verlag Dominicus, Prague, Czech Republic.
  22. Baguelin, F., Frank, R. and Said, Y.H. (1997), "Theoretical study of lateral reaction mechanism of piles", Geotech Prague, 27(3), 405-434.
  23. David, T.K. and Forth, J.P. (2011), Modelling of Soil Structure Interaction of Integral Abutment Bridges, World Academy of Science, Engineering and Technology, 5, 2011-06-26, 645-650.
  24. Ashour, M. and Norris, G. (2000), "Modelling lateral soil-pile response based on soil-pile interaction", J. Geotech. Geoenviron. Eng., 126(5), 420-428. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420)
  25. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750)
  26. Kim, Y. and Jeong, S. (2011), "Analysis of soil resistance on laterally loaded piles based on 3d soil-pile interaction", Comp. Geotech., 2, 248-257.
  27. Kavitha, P.E., Beena, K.S. and Narayanan, K.P. (2016), "A review on soil-structure interaction analysis of laterally loaded piles", Innov. Infrastruct. Solut., 1, 14. https://doi.org/10.1007/s41062-016-0015-x
  28. McGann, C.R. and Arduino, P. (2011), Laterally-Loaded Pile Foundation, from OpenSeesWiki: .
  29. McGann, C.R., Arduino, P. and Mackenzie-Helnwein, P. (2011), "Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil", J. Geotech. Geoenviron. Eng., 137(6), 557-567. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000468
  30. Chik, K.H., Abbas, J.M. and Taha, M.R. (2008), "Single pile simulation and analysis subjected to lateral load", EJGE-Electr. J. Geotech. Eng., 13.
  31. Ahmadi, M.M. and Ahmari, S. (2009), "finite element modelling of laterally loaded piles in clay", Proceedings of the Institution of Civil Engineering-Geotechnical Engineering, 162(3), 151-163.
  32. Juirnarongrit, T. and Ashford, S.A. (2004), "Lateral load behaviour of cast-in-drilled-hole piles in weakly cemented sand", Transp. Res. Rec. J. Transp. Res. Board, 1868, 190-198.
  33. Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", J. Soil Mech. Found. Div., 90(2), 27-64.
  34. Broms, B.B. (1964), "Lateral resistance of piles in cohesion less soils", J. Soil Mech. Found. Div., 90(3), 123-158.
  35. Kok, S.T. and Huat B.B.K. (2008) "Numerical modelling of laterally loaded piles", Am. J. Appl. Sci., 5(10), 1403-1408. https://doi.org/10.3844/ajassp.2008.1403.1408
  36. Krishnamoorthy, N. and Sharma, K.J. (2008), "Analysis of single and group of piles subjected to lateral load using finite element method", Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) Goa, India, October.
  37. Phanikanth, V.S., Choudhury, D. and Rami Reddy, G. (2010), "Response of single pile under lateral loads in cohesion less soils", EJGE-Electr. J. Geotech. Eng., 15.
  38. Wakai, A., Gose, S. and Ugai, K. (1999), "3D Elasto-plastic finite element analyses of pile foundations subjected to lateral loading", Soil. Foundat. (The Jap. Geotech. Soc.), 39(1), 97-111. https://doi.org/10.3208/sandf.39.97
  39. Yang, Z. and Jeremic, B. (2002), "Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils", Int. J. Numer. Analy. Meth. Geo Mech., 2, 1-31.
  40. Reese, L.C. and Desai, C.S. (1977), Laterally Loaded Piles, In: Desai, C.S. and Christian, J.T. (Edited by) Numerical Methods in Geotechnical Engineering, McGraw-Hill Book Company, New York, U.S.A.
  41. Brown, D.A. and Shie, C.F. (1990), "Three dimensional finite element model of laterally loaded piles", Comp. Geotech., 10(1), 59-79. https://doi.org/10.1016/0266-352X(90)90008-J
  42. Han, J. and Frost, J.D. (2000), "Load-deflection response of transversely isotropic piles under lateral loads", Int. J. Numer. Anal. Meth. Geomech., 24(5), 509-529. https://doi.org/10.1002/(SICI)1096-9853(20000425)24:5<509::AID-NAG79>3.0.CO;2-9
  43. Bartholomew, P. and Morris, A.J. (1976), "A unified approach to fully-stressed design", Eng. Opt., 2(1), 3-15. https://doi.org/10.1080/03052157608960592
  44. Patnaik, S.N. and Hopkins, D.A. (1998), "Optimality of a fully stressed design", Comp. Meth. Appl. Mech. Eng., 165(1-4),215-221. https://doi.org/10.1016/S0045-7825(98)00041-3
  45. Briseghella B., Fenu, L., Feng, Y., Lan, C., Mazzarolo, E. and Zordan, T. (2016), "Optimization indexes to identify the optimal design solution", J. Brid. Eng., 21(3), 04015067-1-04015067-12. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000838
  46. Briseghella, B., Fenu, L., Feng, Y., Mazzarolo, E. and Zordan, T. (2013), "Topology optimization of bridges supported by a concrete shell", Struct. Eng. Int., 23(3), 285-294. https://doi.org/10.2749/101686613X13363929988214
  47. Briseghella, B., Fenu, L., Lan, C., Mazzarolo, E. and Zordan, T. (2013), "Application of topological optimization to bridge design", J. Brid. Eng.
  48. Fiore, A., Marano, G.C., Greco, R. and Mastromarino, E. (2016), "Structural optimization of hollow-section steel trusses by differential evolution algorithm", Int. J. Steel Struct., 16(2) 411-423. https://doi.org/10.1007/s13296-016-6013-1
  49. Greco, R., Marano, G.C. and Fiore, A. (2016), "Performance-cost optimization of tuned mass damper under low-moderate seismic actions", Struct. Des. Tall Spec. Build., 25(18) 1103-1122. https://doi.org/10.1002/tal.1300
  50. Greco, R. and Marano, G.C. (2016), "Robust optimization of base isolation devices under uncertain parameters", JVC/J. Vibr. Contr., 22(3), 853-868. https://doi.org/10.1177/1077546314532670
  51. Lucchini, A., Greco, R., Marano, G.C. and Monti, G. (2014), "Robust design of tuned mass damper systems for seismic protection of multistory buildings", J. Struct. Eng., 140(8), A4014009. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000918
  52. Marano, G.C., Trentadue, F. and Petrone, F. (2014), "Optimal arch shape solution under static vertical loads", Acta Mech., 225(3) 679-686. https://doi.org/10.1007/s00707-013-0985-0
  53. Marano, G.C. and Greco, R. (2011), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", JVC/J. Vibr. Contr., 17(5), 679-688. https://doi.org/10.1177/1077546310365988
  54. Marano, G.C., Greco, R., Quaranta, G., Fiore, A., Avakian, J. and Cascella, D. (2013), "Parametric identification of nonlinear devices for seismic protection using soft computing techniques", Adv. Mater. Res., 639-640(1) 118-129.
  55. Quaranta, G., Fiore, A. and Marano, G.C. (2014), "Optimum design of prestressed concrete beams using constrained differential evolution algorithm", Struct. Mult. Opt., 49(3), 441-453. https://doi.org/10.1007/s00158-013-0979-5
  56. Zordan, T., Briseghella, B. and Mazzarolo, E. (2010), "Bridge structural optimization through step-by-step evolutionary process", Struct. Eng. Int. (SEI), 20(1), 72-78. https://doi.org/10.2749/101686610791555586
  57. Palmer, L.A. and Thompson, J.B. (1948), "The earth pressure and deflection along the embedded lengths of piles subjected to lateral thrusts", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, the Netherlands. June.
  58. Davisson, M.T. (1970), Lateral Load Capacity of Piles, Highway Research Record, NO.333, Washington, D.C., U.S.A., 104-112.
  59. Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24, 247-268 https://doi.org/10.12989/sem.2006.24.2.247
  60. Carrol, W.F. (1999), A Primer for Finite Elements in Elastic Structures, John Wiley & Sons, Inc., New York, U.S.A.
  61. Elsgolts, L.E. (1980), Differential Equations and the Calculus of Variations, English Edition, MIR Publishers, Moscow, USSR.
  62. Myskis, A.D. (1979), Advanced Mathematics for Engineers, English Edition, MIR Publishers, Moscow, USSR.
  63. Banichuk, N.V. and Karihaloo, B.L. (1977), "On the solution of optimization problems with singularities", Int. J. Sol. Struct., 13(8) 725-733. https://doi.org/10.1016/0020-7683(77)90109-3
  64. Fenu, L. (2006), "Pali multiton caricati lateralmente e con spostamento minimo", Proceedings of the 16th CTE Conference, Parma, Italy, November.

Cited by

  1. A Heuristic Approach to Identify the Steel Grid Direction of R/C Slabs Using the Yield-Line Method for Analysis vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/6017146
  2. Application of steel-concrete composite pile foundation system as energy storage medium vol.77, pp.6, 2021, https://doi.org/10.12989/sem.2021.77.6.753
  3. Buckling Analysis of Piles in Multi-Layered Soils vol.11, pp.22, 2018, https://doi.org/10.3390/app112210624