DOI QR코드

DOI QR Code

Nonlinear first ply failure analysis of composite skewed hypar shells using FEM

  • Received : 2018.02.18
  • Accepted : 2018.07.21
  • Published : 2018.10.10

Abstract

This paper uses the finite element method (FEM) considering geometrically nonlinear strains to study the first ply failure of laminated composite skewed hypar shell roofs through well-established failure criteria along with the serviceability criterion of deflection. Apart from validating the approach through solution of benchmark problems, skewed hypars with different practical parametric variations are studied for failure loads and tendencies. First ply failure zones are also identified to suggest design and non-destructive monitoring guidelines to the practising engineers. Recommendation tables regarding the design approaches to be adopted in specific cases and factor of safety values needed to be imposed on first ply failure load values for varying shell curvatures are also suggested in this paper. Providing practical inputs to design engineers is the main achievement of the present study.

Keywords

References

  1. Adali, S. and Cagdas, I.U. (2011), "Failure analysis of curved composite panels based on first-ply and buckling failures", Proc. Eng., 10, 1591-1596. https://doi.org/10.1016/j.proeng.2011.04.266
  2. Ahmed, S. and Sluys, L.J. (2014), "Implicit/explicit elasto dynamics of isotropic and anisotropic plates and shells using a solid-like shell element", Eur. J. Mech. A/Sol., 43, 118-132.
  3. Akhras, G. and Li, W.C. (2007), "Progressive failure analysis of thick composite plates using the spline finite strip method", Compos. Struct., 79(1), 34-43. https://doi.org/10.1016/j.compstruct.2005.11.035
  4. Amabili, M. and Reddy, J.N. (2010), "A new nonlinear higher order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells", Int. J. Nonlin. Mech., 45, 409-418.
  5. Arciniega, R.A. and Reddy, J.N. (2007), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comp. Meth. App. Mech. Eng., 196, 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
  6. Bandyopadhyay, J.N. (1998), Thin Shell Structures Classical and Modern Analysis, New Age International (P) Limited, Publishers, New Delhi, India.
  7. Bandyopadhyay, T. and Karmakar, A. (2015), "Bending characteristics of delaminated cross-ply composite shallow conical shells in hygrothermal environment", J. Reinf. Plast. Compos., 34(20), 1724-1735. https://doi.org/10.1177/0731684415596379
  8. Bich, D.H. and Nguyen, N.X. (2012), "Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations", J. Sound Vibr., 331(25), 5488-5501. https://doi.org/10.1016/j.jsv.2012.07.024
  9. Chang, R.R. and Chiang, T.H. (2010), "Theoretical and experimental predictions of first ply failure of a laminated composite elevated floor plate", Proc. Inst. Mech. Eng. Part E: J. Pro. Mech. Eng., 224(4), 233-245. https://doi.org/10.1243/09544089JPME327
  10. Chaudhuri, R.A. (2008), "A nonlinear zigzag theory for finite element analysis of highly shear-deformable laminated anisotropic shells", Compos. Struct., 85(4), 350-359. https://doi.org/10.1016/j.compstruct.2007.11.002
  11. Chen, J.F., Morozov, E.V. and Shankar, K. (2012), "A combined elasto-plastic damage model for progressive failure analysis of composite materials and structures", Compos. Struct., 94(12), 3478-3489. https://doi.org/10.1016/j.compstruct.2012.04.021
  12. Chen, J.F., Morozov, E.V. and Shankar, K. (2014), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos. Part A, 61, 185-200. https://doi.org/10.1016/j.compositesa.2014.02.013
  13. Dey, S. and Karmakar, A. (2012), "Dynamic analysis of delaminated composite conical shells under low velocity impact", J. Reinf. Plast. Compos., 32(6), 380-392. https://doi.org/10.1177/0731684412465663
  14. Ellul, B., Camilleri, D. and Betts, J.C. (2014), "A progressive failure analysis applied to fiber-reinforced composite plates subject to out-of-plane bending", Mech. Compos. Mater., 49(6), 605-620. https://doi.org/10.1007/s11029-013-9377-8
  15. Ganesan, R. and Liu, D.Y. (2008), "Progressive failure and post-buckling response of tapered composite plates under uni-axial compression", Compos. Struct., 82(2), 159-176. https://doi.org/10.1016/j.compstruct.2006.12.014
  16. Garai, J. and Ray, C. (2005), "Initial failure analysis of laminated composite plates under humid conditions", J. Reinf. Plast. Compos., 24(11), 1203-1212. https://doi.org/10.1177/0731684405048844
  17. Gohari, S., Sharifi, S., Vrcelj, Z. and Yahya, M.Y. (2015), "First ply failure prediction of an unsymmetrical laminated ellipsoidal woven GFRP composite shell with incorporated surface-bounded sensors and internally pressurized", Compos. Part B, 77, 502-518.
  18. Han, S.C., Tabiei, A., and Park, W.T. (2008), "Geometrically nonlinear analysis of laminated composite thin shells using a modified first order shear deformable element based Lagrangian shell element", Compos. Struct., 82(3), 465-474. https://doi.org/10.1016/j.compstruct.2007.01.027
  19. Kam, T.Y., Sher, H.F., Chao, T.N. and Chang, R.R. (1996), "Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach", Int. J. Sol. Struct., 33(3), 375-398. https://doi.org/10.1016/0020-7683(95)00042-9
  20. Khan, A.H. and Patel, B.P. (2014), "Nonlinear forced vibration response of bimodular laminated composite plates", Compos. Struct., 108, 524-537. https://doi.org/10.1016/j.compstruct.2013.09.054
  21. Lal, A., Singh, B.N. and Patel, D. (2012), "Stochastic nonlinear failure analysis of laminated composite plates under compressive transverse loading", Compos. Struct., 94(3), 1211-1223. https://doi.org/10.1016/j.compstruct.2011.11.018
  22. Malekzadeh, P. and Monajjemzadeh, S.M. (2015), "Nonlinear response of functionally graded plates under moving load", Thin-Wall. Struct., 96, 120-129. https://doi.org/10.1016/j.tws.2015.07.017
  23. Nanda, N. and Bandyopadhyay, J.N. (2007), "Nonlinear free vibration analysis of laminated composite cylindrical shells with cut outs", J. Reinf. Plast. Compos., 26(14), 1413-1427. https://doi.org/10.1177/0731684407079776
  24. Nanda, N. and Bandyopadhyay, J.N. (2008), "Nonlinear transient response of laminated composite shells", J. Eng. Mech., 134(11), 983-990.
  25. Nanda, N. and Bandyopadhyay, J.N. (2009), "Geometrically nonlinear transient analysis of laminated composite shells using the finite element method", J. Sound Vibr., 325, 174-185. https://doi.org/10.1016/j.jsv.2009.02.044
  26. Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Limited, U.K.
  27. Palazotto, A.N. and Dennis, S.T. (1992), Nonlinear Analysis of Shell Structures, AIAA Education Series, American Institute of Aeronautics and Astronautics (AIAA) Washington, D.C., U.S.A.
  28. Qatu, M.S. and Leissa, A.W. (1991), "Vibration studies for laminated composite twisted cantilever plates", Int. J. Mech. Sci., 33(11), 927-940. https://doi.org/10.1016/0020-7403(91)90012-R
  29. Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2004), "First ply failure of laminated composite plates-a mixed finite element approach", J. Reinf. Plast. Compos., 23(3), 291-315. https://doi.org/10.1177/0731684404031464
  30. Ray, C. and Dey, M. (2008), "Failure analysis of laminated composite plates under linearly varying temperature", J. Reinf. Plast. Compos., 28(1), 99-107. https://doi.org/10.1177/0731684407084215
  31. Reddy, J.N. (2004), An Introduction to Nonlinear Finite-Element Analysis, Oxford University Press, New York, U.S.A.
  32. Reddy, Y.S.N. and Reddy, J.N. (1992), "Linear and nonlinear failure analysis of composite laminates with transverse shear", Compos. Sci. Technol., 44, 227-255. https://doi.org/10.1016/0266-3538(92)90015-U
  33. Sanders, J.L., Jr. (1963), "Nonlinear theories for thin shells", Q. Appl. Math., 21(1), 21-36. https://doi.org/10.1090/qam/147023
  34. Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1997), "Progressive failure of symmetrically laminated plates under uni-axial compression", Struct. Eng. Mech., 5(4), 433-450. https://doi.org/10.12989/sem.1997.5.4.433
  35. Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1998a), "Progressive failure of symmetric laminates under in-plane shear: I-positive shear", Struct. Eng. Mech., 6(2), 143-159. https://doi.org/10.12989/sem.1998.6.2.143
  36. Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1998b), "Progressive failure of symmetric laminates under in-plane shear: II-negative shear", Struct. Eng. Mech., 6(7), 757-772. https://doi.org/10.12989/sem.1998.6.7.757
  37. Van, H.N., Hoai, N.N., Dinh, T.C. and Thoi, T.N. (2014), "Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse mesh accuracy", Compos. Struct., 112, 327-338. https://doi.org/10.1016/j.compstruct.2014.02.024
  38. Vlasov, V.Z. (1958). Allgemeine Schalentheorie und Ihre Anwendung in der Technik, Akademie-Verlag GmbH Berlin.
  39. Xue, J., Ding, Y., Han, F. and Liu, R. (2013), "An extension of Karman-Donnell's theory for non-shallow, long cylindrical shells undergoing large deflection", Eur. J. Mech. A/Sol., 37, 329-335. https://doi.org/10.1016/j.euromechsol.2012.08.004
  40. Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51, 131-144.

Cited by

  1. The Meshfree Analysis of Geometrically Nonlinear Problem Based on Radial Basis Reproducing Kernel Particle Method vol.12, pp.4, 2020, https://doi.org/10.1142/s1758825120500441