References
- Adali, S. and Cagdas, I.U. (2011), "Failure analysis of curved composite panels based on first-ply and buckling failures", Proc. Eng., 10, 1591-1596. https://doi.org/10.1016/j.proeng.2011.04.266
- Ahmed, S. and Sluys, L.J. (2014), "Implicit/explicit elasto dynamics of isotropic and anisotropic plates and shells using a solid-like shell element", Eur. J. Mech. A/Sol., 43, 118-132.
- Akhras, G. and Li, W.C. (2007), "Progressive failure analysis of thick composite plates using the spline finite strip method", Compos. Struct., 79(1), 34-43. https://doi.org/10.1016/j.compstruct.2005.11.035
- Amabili, M. and Reddy, J.N. (2010), "A new nonlinear higher order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells", Int. J. Nonlin. Mech., 45, 409-418.
- Arciniega, R.A. and Reddy, J.N. (2007), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comp. Meth. App. Mech. Eng., 196, 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
- Bandyopadhyay, J.N. (1998), Thin Shell Structures Classical and Modern Analysis, New Age International (P) Limited, Publishers, New Delhi, India.
- Bandyopadhyay, T. and Karmakar, A. (2015), "Bending characteristics of delaminated cross-ply composite shallow conical shells in hygrothermal environment", J. Reinf. Plast. Compos., 34(20), 1724-1735. https://doi.org/10.1177/0731684415596379
- Bich, D.H. and Nguyen, N.X. (2012), "Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations", J. Sound Vibr., 331(25), 5488-5501. https://doi.org/10.1016/j.jsv.2012.07.024
- Chang, R.R. and Chiang, T.H. (2010), "Theoretical and experimental predictions of first ply failure of a laminated composite elevated floor plate", Proc. Inst. Mech. Eng. Part E: J. Pro. Mech. Eng., 224(4), 233-245. https://doi.org/10.1243/09544089JPME327
- Chaudhuri, R.A. (2008), "A nonlinear zigzag theory for finite element analysis of highly shear-deformable laminated anisotropic shells", Compos. Struct., 85(4), 350-359. https://doi.org/10.1016/j.compstruct.2007.11.002
- Chen, J.F., Morozov, E.V. and Shankar, K. (2012), "A combined elasto-plastic damage model for progressive failure analysis of composite materials and structures", Compos. Struct., 94(12), 3478-3489. https://doi.org/10.1016/j.compstruct.2012.04.021
- Chen, J.F., Morozov, E.V. and Shankar, K. (2014), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos. Part A, 61, 185-200. https://doi.org/10.1016/j.compositesa.2014.02.013
- Dey, S. and Karmakar, A. (2012), "Dynamic analysis of delaminated composite conical shells under low velocity impact", J. Reinf. Plast. Compos., 32(6), 380-392. https://doi.org/10.1177/0731684412465663
- Ellul, B., Camilleri, D. and Betts, J.C. (2014), "A progressive failure analysis applied to fiber-reinforced composite plates subject to out-of-plane bending", Mech. Compos. Mater., 49(6), 605-620. https://doi.org/10.1007/s11029-013-9377-8
- Ganesan, R. and Liu, D.Y. (2008), "Progressive failure and post-buckling response of tapered composite plates under uni-axial compression", Compos. Struct., 82(2), 159-176. https://doi.org/10.1016/j.compstruct.2006.12.014
- Garai, J. and Ray, C. (2005), "Initial failure analysis of laminated composite plates under humid conditions", J. Reinf. Plast. Compos., 24(11), 1203-1212. https://doi.org/10.1177/0731684405048844
- Gohari, S., Sharifi, S., Vrcelj, Z. and Yahya, M.Y. (2015), "First ply failure prediction of an unsymmetrical laminated ellipsoidal woven GFRP composite shell with incorporated surface-bounded sensors and internally pressurized", Compos. Part B, 77, 502-518.
- Han, S.C., Tabiei, A., and Park, W.T. (2008), "Geometrically nonlinear analysis of laminated composite thin shells using a modified first order shear deformable element based Lagrangian shell element", Compos. Struct., 82(3), 465-474. https://doi.org/10.1016/j.compstruct.2007.01.027
- Kam, T.Y., Sher, H.F., Chao, T.N. and Chang, R.R. (1996), "Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach", Int. J. Sol. Struct., 33(3), 375-398. https://doi.org/10.1016/0020-7683(95)00042-9
- Khan, A.H. and Patel, B.P. (2014), "Nonlinear forced vibration response of bimodular laminated composite plates", Compos. Struct., 108, 524-537. https://doi.org/10.1016/j.compstruct.2013.09.054
- Lal, A., Singh, B.N. and Patel, D. (2012), "Stochastic nonlinear failure analysis of laminated composite plates under compressive transverse loading", Compos. Struct., 94(3), 1211-1223. https://doi.org/10.1016/j.compstruct.2011.11.018
- Malekzadeh, P. and Monajjemzadeh, S.M. (2015), "Nonlinear response of functionally graded plates under moving load", Thin-Wall. Struct., 96, 120-129. https://doi.org/10.1016/j.tws.2015.07.017
- Nanda, N. and Bandyopadhyay, J.N. (2007), "Nonlinear free vibration analysis of laminated composite cylindrical shells with cut outs", J. Reinf. Plast. Compos., 26(14), 1413-1427. https://doi.org/10.1177/0731684407079776
- Nanda, N. and Bandyopadhyay, J.N. (2008), "Nonlinear transient response of laminated composite shells", J. Eng. Mech., 134(11), 983-990.
- Nanda, N. and Bandyopadhyay, J.N. (2009), "Geometrically nonlinear transient analysis of laminated composite shells using the finite element method", J. Sound Vibr., 325, 174-185. https://doi.org/10.1016/j.jsv.2009.02.044
- Owen, D.R.J. and Hinton, E. (1980), Finite Elements in Plasticity: Theory and Practice, Pineridge Press Limited, U.K.
- Palazotto, A.N. and Dennis, S.T. (1992), Nonlinear Analysis of Shell Structures, AIAA Education Series, American Institute of Aeronautics and Astronautics (AIAA) Washington, D.C., U.S.A.
- Qatu, M.S. and Leissa, A.W. (1991), "Vibration studies for laminated composite twisted cantilever plates", Int. J. Mech. Sci., 33(11), 927-940. https://doi.org/10.1016/0020-7403(91)90012-R
- Ramtekkar, G.S., Desai, Y.M. and Shah, A.H. (2004), "First ply failure of laminated composite plates-a mixed finite element approach", J. Reinf. Plast. Compos., 23(3), 291-315. https://doi.org/10.1177/0731684404031464
- Ray, C. and Dey, M. (2008), "Failure analysis of laminated composite plates under linearly varying temperature", J. Reinf. Plast. Compos., 28(1), 99-107. https://doi.org/10.1177/0731684407084215
- Reddy, J.N. (2004), An Introduction to Nonlinear Finite-Element Analysis, Oxford University Press, New York, U.S.A.
- Reddy, Y.S.N. and Reddy, J.N. (1992), "Linear and nonlinear failure analysis of composite laminates with transverse shear", Compos. Sci. Technol., 44, 227-255. https://doi.org/10.1016/0266-3538(92)90015-U
- Sanders, J.L., Jr. (1963), "Nonlinear theories for thin shells", Q. Appl. Math., 21(1), 21-36. https://doi.org/10.1090/qam/147023
- Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1997), "Progressive failure of symmetrically laminated plates under uni-axial compression", Struct. Eng. Mech., 5(4), 433-450. https://doi.org/10.12989/sem.1997.5.4.433
- Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1998a), "Progressive failure of symmetric laminates under in-plane shear: I-positive shear", Struct. Eng. Mech., 6(2), 143-159. https://doi.org/10.12989/sem.1998.6.2.143
- Singh, S.B., Kumar, A. and Iyengar, N.G.R. (1998b), "Progressive failure of symmetric laminates under in-plane shear: II-negative shear", Struct. Eng. Mech., 6(7), 757-772. https://doi.org/10.12989/sem.1998.6.7.757
- Van, H.N., Hoai, N.N., Dinh, T.C. and Thoi, T.N. (2014), "Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse mesh accuracy", Compos. Struct., 112, 327-338. https://doi.org/10.1016/j.compstruct.2014.02.024
- Vlasov, V.Z. (1958). Allgemeine Schalentheorie und Ihre Anwendung in der Technik, Akademie-Verlag GmbH Berlin.
- Xue, J., Ding, Y., Han, F. and Liu, R. (2013), "An extension of Karman-Donnell's theory for non-shallow, long cylindrical shells undergoing large deflection", Eur. J. Mech. A/Sol., 37, 329-335. https://doi.org/10.1016/j.euromechsol.2012.08.004
- Zhao, X. and Liew, K.M. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51, 131-144.
Cited by
- The Meshfree Analysis of Geometrically Nonlinear Problem Based on Radial Basis Reproducing Kernel Particle Method vol.12, pp.4, 2020, https://doi.org/10.1142/s1758825120500441