DOI QR코드

DOI QR Code

Benchmark tests of MITC triangular shell elements

  • Jun, Hyungmin (Department of Biological Engineering, Massachusetts Institute of Technology) ;
  • Mukai, Paul (PVM Associates) ;
  • Kim, San (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2018.06.18
  • Accepted : 2018.08.14
  • Published : 2018.10.10

Abstract

In this paper, we compare and assess the performance of the standard 3- and 6-node MITC shell elements (Lee and Bathe 2004) with the recently developed MITC triangular elements (Lee et al. 2014, Jeon et al. 2014, Jun et al. 2018) which were based on the partitions of unity approximation, bubble node, or both. The convergence behavior of the shell elements are measured in well-known benchmark tests; four plane stress tests (mesh distortion test, cantilever beam, Cook's skew beam, and MacNeal beam), two plate tests (Morley's skew plate and circular plate), and six shell tests (curved beam, twisted beam, pinched cylinder, hemispherical shells with or without hole, and Scordelis-Lo roof). To precisely compare and evaluate the solution accuracy of the shell elements, different triangular mesh patterns and distorted element mesh are adopted in the benchmark problems. All shell finite elements considered pass the basic tests; namely, the isotropy, the patch, and the zero energy mode tests.

Keywords

Acknowledgement

Supported by : Disaster and Safety Management Institute, Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. Andelfinger, U. and Ramm, E. (1993), "EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements", Int. J. Numer. Meth. Eng., 36, 1311-1337.
  2. Babuska, I. and Melenk, J.M. (1996), "The Partition of Unity Method", Int. J. Numer. Meth. Eng., 40, 727-758.
  3. Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, 2014 and Higher Education Press, China.
  4. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
  5. Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2
  6. Belytschko, T. and Leviathan, I. (1994), "Physical stabilization of the 4-node shell element with one point quadrature", Comput. Meth. Appl. Mech. Eng., 113, 321-350. https://doi.org/10.1016/0045-7825(94)90052-3
  7. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J.S.J. (1985), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Comput. Meth. Appl. Mech. Eng., 51, 221-258.
  8. Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Int. J. Numer. Meth. Eng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
  9. Chapelle, D. and Suarez, I.P. (2008), "Detailed reliability assessment of triangular MITC elements for thin shells", Comput. Struct., 86, 2192-2202. https://doi.org/10.1016/j.compstruc.2008.06.001
  10. Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
  11. Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 207-231. https://doi.org/10.12989/sem.1999.8.2.207
  12. Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
  13. Da Veiga, L.B., Chapelle, D. and Suarez, I.P. (2007), "Towards improving the MITC6 triangular shell element", Comput. Struct., 85, 1589-1610. https://doi.org/10.1016/j.compstruc.2007.03.003
  14. Duarte, C.A. and Oden, J.T. (1996), "An hp adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 139, 237-262.
  15. Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
  16. Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 190, 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4
  17. Han, S.C., Kanok-Nukulchai, W. and Lee, W.H. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., 20(2), 191-213. https://doi.org/10.12989/sem.2005.20.2.191
  18. Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation.
  19. Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003
  20. Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004
  21. Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Meth. Appl. Mech. Eng., 337, 458-480.
  22. Karypis, G. and Kumar, V. (1998), "A fast and high quality multilevel scheme for partitioning irregular graphs", SIAM J. Sci. Comput., 20, 359-392. https://doi.org/10.1137/S1064827595287997
  23. Kim, D.N. and Bathe, K.J. (2009), "A triangular six-node shell element", Comput. Struct., 87, 1451-1460. https://doi.org/10.1016/j.compstruc.2009.05.002
  24. Kim, J. and Bathe, K.J. (2013), "The finite element method enriched by interpolation covers", Comput. Struct., 116, 35-49.
  25. Kim, S and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43.
  26. Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002
  27. Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004
  28. Ko, Y., Lee, Y., Lee, P.S. and Bathe, K.J. (2017), "Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193, 187-206.
  29. Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004
  30. Lee, P.S., Noh, H.C. and Choi, C.K. (2008), "Geometry-dependent MITC method for a 2-node iso-beam element", Struct. Eng. Mech., 29, 203-221. https://doi.org/10.12989/sem.2008.29.2.203
  31. Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164.
  32. Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005
  33. Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the HellingerReissner principle", Comput. Struct., 110, 93-106.
  34. MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Fin. Elem. Anal. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
  35. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  36. Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York, U.S.A.
  37. Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Meth. Appl. Mech. Eng., 153, 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
  38. Schenk, O. and Gartner, K. (2006), "On fast factorization pivoting methods for sparse symmetric indefinite systems", Electr. Trans. Numer. Anal., 23, 158-179.
  39. Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181, 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9
  40. Strouboulis, T., Copps, K. and Babuska, I. (2000), "The generalized finite element method: An example of its implementation and illustration of its performance", Int. J. Numer. Meth. Eng., 47, 1401-1417.
  41. Tian, R., Yagawa, G. and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Meth. Appl. Mech. Eng., 195, 4768-4782.
  42. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, London.
  43. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill.
  44. Xu, J.P. and Rajendran, S. (2013), "A 'FE-Meshfree' TRIA3 element based on partition of unity for linear and geometry nonlinear analyses", Comput. Mech., 51, 843-864. https://doi.org/10.1007/s00466-012-0762-2
  45. Yoo, S.W. and Choi, C.K. (2000), "Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element", Struct. Eng. Mech., 9(1), 99-110. https://doi.org/10.12989/sem.2000.9.1.099

Cited by

  1. Experimental and numerical investigations of near-field underwater explosions vol.77, pp.3, 2021, https://doi.org/10.12989/sem.2021.77.3.395
  2. Goal oriented error estimation in multi-scale shell element finite element problems vol.8, pp.1, 2021, https://doi.org/10.1186/s40323-021-00189-2