Acknowledgement
Supported by : Disaster and Safety Management Institute, Korea Institute of Energy Technology Evaluation and Planning (KETEP)
References
- Andelfinger, U. and Ramm, E. (1993), "EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements", Int. J. Numer. Meth. Eng., 36, 1311-1337.
- Babuska, I. and Melenk, J.M. (1996), "The Partition of Unity Method", Int. J. Numer. Meth. Eng., 40, 727-758.
- Bathe, K.J. (2016), Finite Element Procedures, 2nd Edition, 2014 and Higher Education Press, China.
- Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements the use of mixed interpolation of tensorial components", Int. J. Numer. Meth. Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
- Bathe, K.J., Lee, P.S. and Hiller, J.F. (2003), "Towards improving the MITC9 shell element", Comput. Struct., 81, 477-489. https://doi.org/10.1016/S0045-7949(02)00483-2
- Belytschko, T. and Leviathan, I. (1994), "Physical stabilization of the 4-node shell element with one point quadrature", Comput. Meth. Appl. Mech. Eng., 113, 321-350. https://doi.org/10.1016/0045-7825(94)90052-3
- Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N. and Ong, J.S.J. (1985), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Comput. Meth. Appl. Mech. Eng., 51, 221-258.
- Belytschko, T., Wong, B.L. and Stolarski, H. (1989), "Assumed strain stabilization procedure for the 9-node Lagrange shell element", Int. J. Numer. Meth. Eng., 28, 385-414. https://doi.org/10.1002/nme.1620280210
- Chapelle, D. and Suarez, I.P. (2008), "Detailed reliability assessment of triangular MITC elements for thin shells", Comput. Struct., 86, 2192-2202. https://doi.org/10.1016/j.compstruc.2008.06.001
- Choi, C.K. and Paik, J.G. (1994), "An efficient four node degenerated shell element based on the assumed covariant strain", Struct. Eng. Mech., 2(1), 17-34. https://doi.org/10.12989/sem.1994.2.1.017
- Choi, C.K., Lee, P.S. and Park, Y.M. (1999), "Defect-free 4-node flat shell element: NMS-4F element", Struct. Eng. Mech., 8(2), 207-231. https://doi.org/10.12989/sem.1999.8.2.207
- Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons.
- Da Veiga, L.B., Chapelle, D. and Suarez, I.P. (2007), "Towards improving the MITC6 triangular shell element", Comput. Struct., 85, 1589-1610. https://doi.org/10.1016/j.compstruc.2007.03.003
- Duarte, C.A. and Oden, J.T. (1996), "An hp adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 139, 237-262.
- Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
- Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 190, 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4
- Han, S.C., Kanok-Nukulchai, W. and Lee, W.H. (2011), "A refined finite element for first-order plate and shell analysis", Struct. Eng. Mech., 20(2), 191-213. https://doi.org/10.12989/sem.2005.20.2.191
- Hughes, T.J.R. (2012), The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Courier Corporation.
- Jeon, H.M., Lee, P.S. and Bathe, K.J. (2014), "The MITC3 shell finite element enriched by interpolation covers", Comput. Struct., 134, 128-142. https://doi.org/10.1016/j.compstruc.2013.12.003
- Jeon, H.M., Lee, Y., Lee, P.S. and Bathe, K.J. (2015), "The MITC3+ shell element in geometric nonlinear analysis", Comput. Struct., 146, 91-104. https://doi.org/10.1016/j.compstruc.2014.09.004
- Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Meth. Appl. Mech. Eng., 337, 458-480.
- Karypis, G. and Kumar, V. (1998), "A fast and high quality multilevel scheme for partitioning irregular graphs", SIAM J. Sci. Comput., 20, 359-392. https://doi.org/10.1137/S1064827595287997
- Kim, D.N. and Bathe, K.J. (2009), "A triangular six-node shell element", Comput. Struct., 87, 1451-1460. https://doi.org/10.1016/j.compstruc.2009.05.002
- Kim, J. and Bathe, K.J. (2013), "The finite element method enriched by interpolation covers", Comput. Struct., 116, 35-49.
- Kim, S and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43.
- Ko, Y., Lee, P.S. and Bathe, K.J. (2016), "The MITC4+ shell element and its performance", Comput. Struct., 169, 57-68. https://doi.org/10.1016/j.compstruc.2016.03.002
- Ko, Y., Lee, P.S. and Bathe, K.J. (2017), "A new MITC4+ shell element", Comput. Struct., 182, 404-418. https://doi.org/10.1016/j.compstruc.2016.11.004
- Ko, Y., Lee, Y., Lee, P.S. and Bathe, K.J. (2017), "Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems", Comput. Struct., 193, 187-206.
- Lee, P.S. and Bathe, K.J. (2004), "Development of MITC isotropic triangular shell finite elements", Comput. Struct., 82, 945-962. https://doi.org/10.1016/j.compstruc.2004.02.004
- Lee, P.S., Noh, H.C. and Choi, C.K. (2008), "Geometry-dependent MITC method for a 2-node iso-beam element", Struct. Eng. Mech., 29, 203-221. https://doi.org/10.12989/sem.2008.29.2.203
- Lee, Y., Jeon, H.M., Lee, P.S. and Bathe, K.J. (2015), "The modal behavior of the MITC3+ triangular shell element", Comput. Struct., 153, 148-164.
- Lee, Y., Lee, P.S. and Bathe, K.J. (2014), "The MITC3+ shell element and its performance", Comput. Struct., 138, 12-23. https://doi.org/10.1016/j.compstruc.2014.02.005
- Lee, Y., Yoon, K. and Lee, P.S. (2012), "Improving the MITC3 shell finite element by using the HellingerReissner principle", Comput. Struct., 110, 93-106.
- MacNeal, R.H. and Harder, R.L. (1985), "A proposed standard set of problems to test finite element accuracy", Fin. Elem. Anal. Des., 1, 3-20. https://doi.org/10.1016/0168-874X(85)90003-4
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: Basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
- Morley, L.S.D. (1963), Skew Plates and Structures, Pergamon Press, New York, U.S.A.
- Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Meth. Appl. Mech. Eng., 153, 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
- Schenk, O. and Gartner, K. (2006), "On fast factorization pivoting methods for sparse symmetric indefinite systems", Electr. Trans. Numer. Anal., 23, 158-179.
- Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181, 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9
- Strouboulis, T., Copps, K. and Babuska, I. (2000), "The generalized finite element method: An example of its implementation and illustration of its performance", Int. J. Numer. Meth. Eng., 47, 1401-1417.
- Tian, R., Yagawa, G. and Terasaka, H. (2006), "Linear dependence problems of partition of unity-based generalized FEMs", Comput. Meth. Appl. Mech. Eng., 195, 4768-4782.
- Timoshenko, S.P. and Goodier, J.N. (1970), Theory of Elasticity, McGraw-Hill, New York, London.
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-hill.
- Xu, J.P. and Rajendran, S. (2013), "A 'FE-Meshfree' TRIA3 element based on partition of unity for linear and geometry nonlinear analyses", Comput. Mech., 51, 843-864. https://doi.org/10.1007/s00466-012-0762-2
- Yoo, S.W. and Choi, C.K. (2000), "Geometrically nonlinear analysis of laminated composites by an improved degenerated shell element", Struct. Eng. Mech., 9(1), 99-110. https://doi.org/10.12989/sem.2000.9.1.099
Cited by
- Experimental and numerical investigations of near-field underwater explosions vol.77, pp.3, 2021, https://doi.org/10.12989/sem.2021.77.3.395
- Goal oriented error estimation in multi-scale shell element finite element problems vol.8, pp.1, 2021, https://doi.org/10.1186/s40323-021-00189-2