참고문헌
- D. L. Hartmann, M. E. Ockert-bell, and M. L. Michelsen, "The effect of cloud type on Earth's energy balance: global analysis," Journal of Climate, vol. 5, no. 11, pp. 1281-1304, 1992. DOI: 10.1175/15200442(1992)005<1281:TEOCTO>2.0.CO;2.
- G. A. Isaac and R. A. Stuart, "Relationships between cloud type and amount, precipitation, and surface temperature in the Mackenzie River Valley-Beaufort Sea area," Journal of Climate, vol. 9, no. 8, pp. 1921-1941, 1996. DOI: 10.1175/1520-0442(1996)009<1921:RBCTAA>2.0.CO;2.
- F. Yuan, Y. H. Lee, and Y. S. Meng, "Comparison of radio-sounding profiles for cloud attenuation analysis in the tropical region," in Proceedings of IEEE International Symposium on Antennas and Propagation, Memphis, TN, pp. 259-260, 2004. DOI: 10.1109/APS.2014.6904461.
- Y. Liu, J. R. Key, and X. Wang, "The influence of changes in cloud cover on recent surface temperature trends in the Arctic," Journal of Climate, vol. 21, no. 4, pp. 705-715, 2008. DOI: 10.1175/2007JCLI1681.1.
- F. Cui, R. Ju, Y. Ding, H. Ding, and X. Cheon, "Prediction of regional global horizontal irradiance combining ground-based cloud observation and numerical weather prediction," Advanced Material Research, vol. 1073-1076, pp. 388-394, 2014. DOI: 10.4028/www.scientific.net/amr.1073-1076.388.
- M. C. Naud, J. F. Booth, and A. D. Del Genio, "The relationship between boundary layer stability and cloud cover in the post-coldfrontal region," Journal of Climate, vol. 29, no. 22, pp. 8129-8149, 2016. DOI: 10.1175/JCLI-D-15-0700.1.
- D. Pages, J. Calbo, J. A. Gonzalez, and J. Badosa, "Comparison of several ground-based cloud detection techniques," in Abstracts of European Geophysical Society XXVII Assembly, Nice, France, pp. 269-299, 2002.
- K. A. Buch and C. H. Sun "Cloud classification using whole-sky imager data," in Proceedings of the 9th Symposium on Meteorological Observations and Instrumentation, Charlotte, NC, 1995.
- M. Singh and M. Glennen, "Automated ground-based cloud recognition," Pattern Analysis and Applications, vol. 8, no. 3, pp. 258-271, 2005. DOI: 10.1007/s10044-005-0007-5.
- J. Calbo and J. Sabburg, "Feature extraction from whole-sky groundbased images for cloud-type recognition," Journal of Atmospheric and Oceanic Technology, vol. 25, no. 1, pp. 3-14, 2008. DOI: 10.1175/2007JTECHA959.1.
- A. Heinle, A. Macke, and A. Srivastav, "Automatic cloud classification of whole sky images," Atmospheric Measurement Techniques, vol. 3, no. 3, pp. 557-567, 2010. DOI: 10.5194/amt-3-557-2010.
- S. Liu, C. Wang, B. Xiao, Z. Zhang, and Y. Shao, "Illuminationinvariant completed LTP descriptor for cloud classification," in Proceedings of the 5th International Congress on Image Signal Processing (CISP), Chongqing, China, pp. 449-453, 2012. DOI: 10.1109/CISP.2012.6469765.
- L. Liu, X. Sun, F. Chen, S. Zhao, and T. Gao, "Cloud classification based on structure features of infrared images," Journal of Atmospheric and Oceanic Technology, vo. 28, no. 3, pp. 410-417, 2011. DOI: 10.1175/2010JTECHA1385.1.
- S. Liu, C. Wang, B. Xiao, Z. Zhang, and Y. Shao, "Salient local binary pattern for ground-based cloud classification," Acta Meteorologica Sinica, vo. 27, no. 2, pp. 211-220, 2013. DOI: 10.1007/s13351-013-0206-8.
- S. Liu, Z. Zhang, and X. Mei, "Ground-based cloud classification using weighted local binary patterns," Journal of Applied Remote Sensing, vol. 9, no. 1, article no. 095062, 2015. DOI: 10.1117/1.JRS.9.095062.
- S. Dev, Y. H. Lee, and S. Winkler, "Categorization of cloud image patches using an improved texton-based approach," in Proceedings of IEEE International Conference on Image Processing (ICIP), Quebec City, Canada, pp. 422-426, 2015. DOI: 10.1109/ICIP.2015.7350833.
- Q. Luo, Y. Meng, L. Liu, X. Zhao, and Z. Zhou, "Cloud classification of ground-based infrared images combining manifold and texture features," Atmospheric Measurement Techniques, 2017. DOI: 10.5194/amt-2017-402.
- J. Gan, W. Lu, Q. Li, Z. Zhang, J. Yang, Y. Ma, and W. Yao, "Cloud type classification of total-sky images using duplex norm-bounded sparse coding," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 7, pp. 3360-3372, 2017. DOI: 10.1109/JSTARS.2017.2669206.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Advances in Neural Information Processing System, vol. 25, pp. 1097-1105, 2012.
- C. Shi, C. Wang, Y. Wang, and B. Xiao, "Deep convolutional activations-based features for ground-based cloud classification," IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 6, pp. 816-820, 2017. DOI: 10.1109/LGRS.2017.2681658.
- L. Ye, Z. Cao, Y. Xiao, and W. Li, "Ground-based cloud image categorization using deep convolutional visual features," in Proceeding of 2015 IEEE International Conference on Image Processing, Quebec City, QC, Canada, pp. 4808-4812, 2015. DOI: 10.1109/ICIP.2015.7351720.
- L. Ye, Z. Cao, and Y. Xiao, "DeepCloud: ground-based cloud image categorization using deep convolutional features," IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 10, pp. 5729-5740, 2017. DOI: 10.1109/TGRS.2017.2712809.
- Z. Zhang, D. Li, S. Liu, B. Xiao, and X. Cao, "Multi-view groundbased cloud recognition by transferring deep visual information," Applied Sciences, vol. 8, no. 5, article no. 748, 2018. DOI: 10.3390/app8050748.
- S. Dev, F. M. Savoy, Y. H. Lee, and S. Winkler, "WAHRSIS: a lowcost high-resolution whole sky imager with near-infrared capabilities," in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXV (Vol. 9071). Bellingham, WA: International Society for Optics and Photonics, 2014. DOI: 10.1117/12.2052982.
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. DOI: 10.1109/5.726791.
- K. Fukushima, "Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biological Cybernetics, vol. 36, no. 4, pp. 193-202, 1980. DOI: 10.1007/BF00344251.
- J. Deng, A. Berg, S. Satheesh, H. Su, A. Khosla, and L. Fei-Fei, "ImageNet large scale visual recognition competition 2012," 2012 [Internet], Available: www.image-net.org/challenges/LSVRC/2012/.
- J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, "Image-Net: a large-scale hierarchical image database," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, 2009. DOI: 10.1109/CVPR.2009.5206848.
- L. Hertel, E. Barth, T. Kaster, and T. Martinetz, "Deep convolutional neural networks as generic feature extractors," in Proceedings of 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, pp. 1-4, 2015. DOI: 10.1109/IJCNN.2015.7280683.
- A. Karpathy, "Convolutional Networks," [Internet], Available: http://cs231n.github.io/convolutional-networks/.
- H. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
- Keras: The Python Deep Learning library [Internet], Available: https://keras.io/.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., "TensorFlow: large-scale machine learning on heterogeneous distributed systems," 2016 [Internet], Available: https://arxiv.org/abs/1603.04467.
피인용 문헌
- A High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets vol.9, pp.21, 2018, https://doi.org/10.3390/app9214500
- Ensemble of Convolution Neural Networks for Driver Smartphone Usage Detection Using Multiple Cameras vol.18, pp.2, 2018, https://doi.org/10.6109/jicce.2020.18.2.75
- Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks vol.13, pp.4, 2018, https://doi.org/10.3390/su13042393
- Deep Feature Vectors Concatenation for Eye Disease Detection Using Fundus Image vol.11, pp.1, 2018, https://doi.org/10.3390/electronics11010023