DOI QR코드

DOI QR Code

Cytological analysis of pregnancy-associated plasma protein-A expression in porcine neonatal testis

미성숙 돼지 정소에서 pregnancy-associated plasma protein-A의 발현의 세포학적 분석

  • Kim, Ji-youn (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Oh, Keon Bong (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Byun, Sung June (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Ock, Sun-A (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Lee, Hwi-Cheul (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Hwang, Seong-Su (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Park, SangHyun (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Ha, Wootae (Department of Stem Cell and Regenerative Biology, KIT, Konkuk University) ;
  • Woo, Jae-Seok (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Song, Hyuk (Department of Stem Cell and Regenerative Biology, KIT, Konkuk University)
  • 김지윤 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 오건봉 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 변승준 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 옥선아 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 이휘철 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 황성수 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 박상현 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 하우태 (건국대학교) ;
  • 우제석 (농촌진흥청 국립축산과학원 동물바이오공학과) ;
  • 송혁 (건국대학교)
  • Received : 2018.09.04
  • Accepted : 2018.09.22
  • Published : 2018.09.30

Abstract

The identification of biomarkers of a living tissues is essentially required to understand specific functions of the cells. In previous study, we reported IGFBP 3 as one of the putative biomarkers, by showing specific expression at porcine spermatogonial stem cells (SSCs) of early stage of porcine testis. In this study, we analyzed the expression of seven members of IGFBP family (IGFBPs) in SSCs and histological expression pattern of pregnancy-associated plasma protein-A (PAPP-A), which plays a role on the growth promoting enzyme by cleavage of IGFBPs in testis of 5 days old pig. RT-PCR analysis showed that IGFBP 1, 2, 3, 4, and 6 were expressed at high level specifically in porcine SSCs compared with whole testis. We performed immunohisotochemical staining of testis sections with PAPP-A and protein gene product 9.5 (PGP9.5) which are the known biomarkers for SSCs. We were not able to find co-expression of PAPP-A and PGP9.5; PAPP-A was expressed only in Sertoli cells and PGP9.5 expression was confirmed in spermatogonium. Additionally, we were able to confirm the GATA4 expression in Sertoli and Leydig cells as a regulator of Sertoli cell function was not detected PGP9.5 expressing cells, indicating indirect evidence of that cytolocalization of PAPP-A expression is limited in Sertoli cells. These results suggested that the PAPP-A expressed in Sertoli cells may play role on regulation of development and differentiation of testicular cells through the IGF axis in neonatal porcine testis.

생체 조직 내에서 표지인자의 발견은 해당 세포의 특성과 기능을 이해하는 데 매우 중요하다. 이전의 연구에서 본 연구진은 돼지정원줄기세포에서 특이적으로 IGFBP 3가 발현되어 표지인자로의 가능성을 보고한 바 있다. 본 연구에서는 IGFBP 3이외의 다른 family member가 정원줄기세포에서 특이적으로 발현하는 지와, 이의 발현을 조절하는 PAPP-A의 조직학적인 측면에서의 발현 양상을 5일령 돼지 정소에서 확인하였다. 그 결과 IGFBP 1, 2, 3, 4, 6의 발현은 정소 전체에서 발현되는 수준보다 돼지 정원줄기세포에서 더 높은 수준에서 발현하고 있음을 확인하였다. PAPP-A는 sertoli cell에서 특이적으로 발현하며, 정원줄기세포에서는 발현하지 않는 것을 PGP9.5와의 동시-조직염색으로 확인하였다. 이러한 결과는 Sertoli cell에서 발현하는 PAPP-A 단백질은 미성숙 돼지 정소에서 IGFBP family를 통해 정소 세포의 발달과 분화를 조절할 것으로 판단된다.

Keywords

References

  1. Antich M, Fabian E, Sarquella J and Bassas L. 1995. Effect of testicular damage induced by cryptorchidism on insulin-like growth factor I receptors in rat Sertoli cells. J Reprod. Fertil. 104:267-275. https://doi.org/10.1530/jrf.0.1040267
  2. Aponte PM, van Bragt MP, de Rooij DG and van Pelt AM. 2005. Spermatogonial stem cells: characteristics and experimental possibilities. APMIS 113:727-742. https://doi.org/10.1111/j.1600-0463.2005.apm_302.x
  3. Bardi G, Bottazzi C, Demori I and Palmero S. 1999. Thyroid hormone and retinoic acid induce the synthesis of insulin-like growth factor-binding protein-4 in prepubertal pig sertoli cells. Eur. J. Endocrinol. 141:637-643. https://doi.org/10.1530/eje.0.1410637
  4. Benyoucef S, Surinya KH, Hadaschik D and Siddle K. 2007. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem. J. 403:603-613. https://doi.org/10.1042/BJ20061709
  5. Cohen P. 2006. Overview of the IGF-I system. Horm Res. 65 Suppl 1:3-8. https://doi.org/10.1159/000090640
  6. Conover CA. 2012. Key questions and answers about pregnancy-associated plasma protein-A. Trends Endocrinol. Metab. 23:242-249. https://doi.org/10.1016/j.tem.2012.02.008
  7. Froment P, Staub C, Hembert S, Pisselet C, Magistrini M, Delaleu B, Seurin D, Levine JE, Johnson L, Binoux M and Monget P. 2004. Reproductive abnormalities in human insulin-like growth factor-binding protein-1 transgenic male mice. Endocrinology 145:2080-2091. https://doi.org/10.1210/en.2003-0956
  8. Fu Z, Kubo T, Noguchi T and Kato H. 2001. Developmental changes in the mRNA levels of IGF-I and its related genes in the reproductive organs of Japanese quail (Coturnix coturnix japonica). Growth Horm IGF Res. 11:24-33. https://doi.org/10.1054/ghir.2000.0186
  9. Goel S, Fujihara M, Minami N, Yamada M and Imai H. 2008. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction 135:785-795. https://doi.org/10.1530/REP-07-0476
  10. Griffeth RJ, Bianda V and Nef S. 2014. The emerging role of insulin-like growth factors in testis development and function. Basic Clin. Androl. 24:12. https://doi.org/10.1186/2051-4190-24-12
  11. Hansson HA, Billig H and Isgaard J. 1989. Insulin-like growth factor I in the developing and mature rat testis: immunohistochemical aspects. Biol. Reprod. 40:1321-1328. https://doi.org/10.1095/biolreprod40.6.1321
  12. Jones JI and Clemmons DR. 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16:3-34.
  13. Kim YH, Kim BJ, Kim BG, Lee YA, Kim KJ, Chung HJ, Hwang S, Woo JS, Park JK, Schmidt JA, Pang MG and Ryu BY. 2013. Stage-specific embryonic antigen-1 expression by undifferentiated spermatogonia in the prepubertal boar testis. J. Anim. Sci. 91:3143-3154. https://doi.org/10.2527/jas.2012-6139
  14. Lee KH, Lee WY, Kim JH, Park CK, Do JT, Kim JH, Choi YS, Kim NH and Song H. 2016. Subculture of Germ Cell-Derived Colonies with GATA4-Positive Feeder Cells from Neonatal Pig Testes. Stem Cells Int. 2016:6029271.
  15. Lee WY, Do JT, Park C, Kim JH, Chung HJ, Kim KW, Gil CH, Kim NH and Song H. 2016. Identification of Putative Biomarkers for the Early Stage of Porcine Spermatogonial Stem Cells Using Next-Generation Sequencing. PLoS One 11:e0147298. https://doi.org/10.1371/journal.pone.0147298
  16. Lin T, Wang D, Nagpal ML, Shimasaki S and Ling N. 1993. Expression and regulation of insulin-like growth factor-binding protein-1, -2, -3, and -4 messenger ribonucleic acids in purified rat Leydig cells and their biological effects. Endocrinology 132:1898-1904. https://doi.org/10.1210/endo.132.5.7682935
  17. Lin TM, Galbert SP, Kiefer D, Spellacy WN and Gall S. 1974. Characterization of four human pregnancy-associated plasma proteins. Am. J. Obstet. Gynecol. 118:223-236. https://doi.org/10.1016/0002-9378(74)90553-5
  18. Luo J, Megee S, Rathi R and Dobrinski I. 2006. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73:1531-1540. https://doi.org/10.1002/mrd.20529
  19. Matsui H and Takahashi T. 2001. Mouse testicular Leydig cells express Klk21, a tissue kallikrein that cleaves fibronectin and IGF-binding protein-3. Endocrinology 142:4918-4929. https://doi.org/10.1210/endo.142.11.8505
  20. Oxvig C. 2015. The role of PAPP-A in the IGF system: location, location, location. J. Cell Commun. Signal. 9:177-187. https://doi.org/10.1007/s12079-015-0259-9
  21. Peters MA, Mol JA, van Wolferen ME, Oosterlaken-Dijksterhuis MA, Teerds KJ and van Sluijs FJ. 2003. Expression of the insulin-like growth factor (IGF) system and steroidogenic enzymes in canine testis tumors. Reprod. Biol. Endocrinol. 1:22. https://doi.org/10.1186/1477-7827-1-22
  22. Phillips BT, Gassei K and Orwig KE. 2010. Spermatogonial stem cell regulation and spermatogenesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365:1663-1678. https://doi.org/10.1098/rstb.2010.0026
  23. Pitetti JL, Calvel P, Zimmermann C, Conne B, Papaioannou MD, Aubry F, Cederroth CR, Urner F, Fumel B, Crausaz M, Docquier M, Herrera PL, Pralong F, Germond M, Guillou F, Jegou B and Nef S. 2013. An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Mol. Endocrinol. 27:814-827. https://doi.org/10.1210/me.2012-1258
  24. Roth MY and Amory JK. 2011. Pharmacologic development of male hormonal contraceptive agents. Clin. Pharmacol. Ther. 89:133-136. https://doi.org/10.1038/clpt.2010.103
  25. Wald NJ, Watt HC and Hackshaw AK. 1999. Integrated screening for Down's syndrome based on tests performed during the first and second trimesters. N. Engl. J. Med. 341:461-467. https://doi.org/10.1056/NEJM199908123410701
  26. Wang D, Nagpal ML, Lin T, Shimasaki S and Ling N. 1994. Insulin-like growth factor-binding protein-2: the effect of human chorionic gonadotropin on its gene regulation and protein secretion and its biological effects in rat Leydig cells. Mol. Endocrinol. 8:69-76.
  27. Zhou J and Bondy C. 1993. Anatomy of the insulin-like growth factor system in the human testis. Fertil. Steril. 60:897-904. https://doi.org/10.1016/S0015-0282(16)56294-3