DOI QR코드

DOI QR Code

Evaluation of Accuracy Improvement of SWAT Model for the Yongdam-Dam Watershed based on Multi-Point Hydrological Observations

용담댐유역의 다지점 유량관측 자료 이용에 따른 SWAT 모형의 정확도 향상성 평가

  • SHIN, Hyung-Jin (Rural Research Institute, Korea Rural Community Corporation) ;
  • PARK, Min-Ji (Han River Environment Research Center, National Institute of Environmental Research) ;
  • LEE, Ji-Won (Dept. of Civil and Environmental and Plant Engrg., Konkuk Univ) ;
  • HWANG, Eui-Ho (K-water Institute, Korea Water Resources Corporation) ;
  • KANG, Seok-Man (Rural Research Institute, Korea Rural Community Corporation) ;
  • CHAE, Hyo-Sok (K-water Institute, Korea Water Resources Corporation)
  • 신형진 (한국농어촌공사 농어촌연구원) ;
  • 박민지 (국립환경과학원 한강물환경연구소) ;
  • 이지완 (건국대학교 사회환경플랜트공학과) ;
  • 황의호 (한국수자원공사 K-water 융합연구원) ;
  • 강석만 (한국농어촌공사 농어촌연구원) ;
  • 채효석 (한국수자원공사 K-water 융합연구원)
  • Received : 2018.08.31
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

This study is to evaluate the accuracy improvement of the model using SWAT(Soil and Water Assessment Tool) model and multi - point hydrological observation data. The watershed is located in the Yongdam Dam($930.4km^2$), the Donghyang($165.5km^2$), the Chuncheon($290.9km^2$), the Juchun($57.8km^2$) and the Seokjeong($80.5km^2$). The watershed covers 70.0 % forest. In order to improve the accuracy of the model, precipitation data were used from two weather stations(Jangsu, Geumsan) and 16 AWS stations daily precipitation data(2003~2011) managed by KMA, MLIT, and K-water. Based on the reliable data of the Yongam test basin in 2003~2011, the runoff of single point (Yongdam dam) and multi-point (Donghyang, Chuncheon, Jucheon, Seokjeong). Simulation results show that the $R^2$ of the single subwatershed (Donghyang, Chuncheon, Jucheon, Seokjeong) is single point(0.84) and multipoint(0.88). For model efficiency coefficient of Nash-Sutcliffe at single point(0.45) and multipoint(0.70).

본 연구에서는 SWAT(Soil and Water Assessment Tool) 모형과 다지점 수문관측 자료를 이용하여 모형의 정확도 향상성을 평가하고자 한다. 대상유역은 한국수자원공사 용담시험유역의 수위자료를 측정하고 있는 용담댐($930.4km^2$), 동향($165.5km^2$), 천천($290.9km^2$), 주천($57.8km^2$), 석정($80.5km^2$) 유역으로 70%이상이 산림유역이다. 모형의 정확도를 향상시키기 위해 강수자료는 기상관측소 2개(장수, 금산)관측소와 기상청, 국토부, 수자원공사에서 관리하는 AWS 16개의 2003~2011년 일 강수량 자료를 이용하였다. 2003~2011년의 용담시험유역의 신뢰할만한 실측자료를 바탕으로 5지점의 일 유출량을 이용하여 단일지점(용담댐)과 다지점(동향, 천천, 주천, 석정)의 유출량을 검 보정하여 비교하였다. 모의 결과 단일지점의 소유역(동향, 천천, 주천, 석정)의 $R^2$는 0.84, 다지점은 0.88, 단일지점의 Nash-Sutcliffe의 모형효율계수 0.45, 다지점은 0.70으로 보다 향상된 모의 결과로 나타났다.

Keywords

References

  1. Ahn, S.R., J.W. Lee, S.S. Jang and S.J. Kim. 2016. Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation -For Namhan River Basin-. Journal of the Korean Society of Agricultural Engineers 58(4):21-35. https://doi.org/10.5389/KSAE.2016.58.4.021
  2. Ahn, S.R., G.A. Park, I.K. Jung, K.J. Lim and S.J. Kim. 2011. Assessing Hydrologic Response to Climate Change of a Stream Watershed Using SLURP Hydrological Model. KSCE Journal of Civil Engineering 15(1):43-55. https://doi.org/10.1007/s12205-011-0890-9
  3. Arnold, J.G. and P.M. Allen. 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology 176(1):57-77. https://doi.org/10.1016/0022-1694(95)02782-3
  4. Arnold, J.G., R Srinivasan, R.S. Muttiah and J.R Williams. 1998. Large area hydrologic modeling and assessment part I : model development. Journal of American Water Resources Association 34(1):73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  5. Beven, K.J. 2000. Rainfall-Runoff Modeling : the Primer. John Wiley & Sons Press, New York.
  6. Boscarello, Laura, Giovanni Ravazzani, Marco Mancini. 2013. Catchment Multisite Discharge Measurements for Hydrological Model Calibration. Procedia Environmental Sciences 19:158-167. https://doi.org/10.1016/j.proenv.2013.06.018
  7. Choi, Y.S., C.K. Choi and K.T. Kim. 2012. Development of a Multi-Site Calibration Module of Distributed Model-The Case of GRM-. Journal of the Korean Association of Geographic Information Studies 15(3):103-118. https://doi.org/10.11108/kagis.2012.15.3.103
  8. Doherty, J. and J.M. Johnston. 2003. Methodologies for calibration and predictive analysis of a watershed model. J. Am. Water Resour. Assoc. 39(2):251-265. https://doi.org/10.1111/j.1752-1688.2003.tb04381.x
  9. Duan, Q., S. Sorooshian and V.K. Gupta. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 28:1015-1031. https://doi.org/10.1029/91WR02985
  10. Gupta, H.V., S. Sorooshian and P.O. Yapo. 1998. Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resources Research 34:751-763. https://doi.org/10.1029/97WR03495
  11. Gupta, H.V., S. Sorooshian and P.O. Yapo. 1999. Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal Hydrologic Engineering 4:135-143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135)
  12. Hong, W.Y., M. Park, J.Y. Park, G.A. Park and S.J. Kim. 2010. The Spatial and Temporal Correlation Analysis between MODIS NDVI and SWAT Predicted Soil Moisture during Forest NDVI Increasing and Decreasing Periods. KSCE Journal of Civil Engineering 14(6):931-939. https://doi.org/10.1007/s12205-010-0851-8
  13. Kim, J., K. Son, J. Noh, C.L. Jang and I.H. Ko. 2006. Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment. Journal of Korea Water Resources Association 39(10):867-880. https://doi.org/10.3741/JKWRA.2006.39.10.867
  14. KIWE, 2013. 2013 year YongDam test basin Operation White Paper. Daejeon South KOREA.
  15. Kwon, H.J., E.H. Hwang, G.S. Lee, B.H. Yu and D.K. Koh. 2008. Application of the Developed Pre-and Post-Processing System to Yongdamdam Watershed using PRMS Hydrological Model. Journal of the Korean Association of Geographic Information Studies 11(3):13-22.
  16. Lamb, R. and A.L. Kay. 2004. Confidence intervals for a spatially generalized, continuous simulation flood frequency model for Great Britain. Water Resour. Res. 40:W07501. doi:10.1029/2003WR002428.
  17. Lee, G.S., Y.R. Kim, L. Ye and E.R. Lee. 2009. The Analysis of Suspended Sediment Load of Donghyang and Cheoncheon Basin using GIS-based SWAT Model. Journal of the Korean Association of Geographic Information Studies 12(2):82-98.
  18. Lee, Y.G., S.H. Lee, S.R. Ahn, M.H. Choi, K.S. Lim and S.J. Kim. 2015. Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model -A Case of Yongdam Dam Watershed-. Journal of the Korean Association of Geographic Information Studies 18(1):90-104. https://doi.org/10.11108/kagis.2015.18.1.090
  19. Li, X., E.W. Donald and E.J. Thomas. 2010. Watershed model calibration using multi-objective optimization and multi-site averaging. Journal of Hydrology 380:277-288. https://doi.org/10.1016/j.jhydrol.2009.11.003
  20. Mkhwanazi, M., J.L. Chavez and E.H. Rambikur. 2012. Comparison of Large aperture scintillometer and satellitebased energy balance models in sensible heat flux and crop evapotranspiration determination. International Journal of Remote Sensing Applications 12:21-30.
  21. Nash, J.E. and J.V. Sutcliffe. 1970. River flow forecasting through conceptual models, Part I - A discussion of principles. Journal of Hydrology 10:283-290.
  22. Neitsch, S.L., J.G. Arnold, J.R. Kiniry, J.R. Williams, and K.W. King. 2001. Soil and Water Assessment Tool: Theoretical documentation, Version 2000. TWRI Report TR-191 College Station, TX: Texas Water Resources Institute.
  23. Park, G.A., S.R. Anh, Y.J. Lee, H.J. Shin, M.J. Park and S.J. Kim. 2009. Assessment of climate change impact on the inflow and outflow of two agricultural reservoirs in Korea. American Society of Agricultural and Biological Engineers 52(5):1869-1883.
  24. Park, G.A., J.Y. Park, H.K. Joh, J.W. Lee, S.R. Ahn and S.J. Kim. Evaluation of Mixed Forest Evapotranspiration and Soil Moisture using Measured and SWAT Simulated Results in a Hillslope Watershed. KSCE Journal of Civil Engineering DOI 10.1007/s12205-014-0193-z (Published online: 30 November 2013a)
  25. Park, M., J.Y. Park, H.J. Shin, M.S. Lee, G.A. Park, I.K. Jung and S.J. Kim. 2010. Projection of future climate change impacs on nonpoint source pollution loads for a forest dominant dam watershed by reflecting future vegetation canopy in a Soil and Water Assessment Tool model. Water Science & Technology-WST 61(8).
  26. Park, M., H.J. Shin, J.Y. Park, G.A. Park and S.J. Kim. 2012. Comparison of Watershed Streamflow Using Projected MIROC3.2 HiRes GCM Data and Observed Weather Data for 2000-2009 under SWAT Simulation. Transactions of the ASABE 55(3):1003-1010. https://doi.org/10.13031/2013.41513
  27. Park, M., R.H., N.W. Kim, K.J. Lim and S.J. Kim. Assessment of Future Climate and Vegetation Canopy Change Impacts on Hydrological Behavior of Chungju Dam Watershed using SWAT Model. KSCE Journal of Civil Engineering DOI 10.1007/s12205-013-0176-5 (Published online: 30 November 2013b).
  28. Park, J.Y., G.A. Park and S.J. Kim. 2013c. Assessment of Future Climate Change Impact on Water Quality of Chungju Lake, South Korea, Using WASP Coupled with SWAT. Journal of the American Water Resources Association 49(6):1225-1238. https://doi.org/10.1111/jawr.12085
  29. Park, J.Y., H. Jung, C.H. Jang and S.J. Kim. 2014. Assessing Climate Change Impact on Hydrological Components of Yongdam Dam Watershed Using RCP Emission Scenarios and SWAT model. Journal of the Korean Society of Agricultural Engineers 56(3):19-29. https://doi.org/10.5389/KSAE.2014.56.3.019
  30. Shin, H.J., M.J. Park and S.J. Kim. 2012. Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model-For the Seolmacheon Catchment-. Journal of Korea Water Resources Association 45(12):1293-1307. https://doi.org/10.3741/JKWRA.2012.45.12.1293
  31. Van Liew, M.W., J.G. Arnold, and D.D. Bosch. 2005. Problems and potential of autocalibrating a hydrologic model. Transactions of ASAE 48:1025-1040. https://doi.org/10.13031/2013.18514
  32. Vandewiele, G.L. and A. Elias. 1995. Monthly water balance of ungauged catchments obtained by geographical regionalization. J. Hydrol. 170:277-291. https://doi.org/10.1016/0022-1694(95)02681-E
  33. Zhang, X., P. Beeson, R. Link, D. Manowitz, R.C. Izaurralde, A. Sadeghi, A.M. Thomson, R. Sahajpal, R. Srinivasan and J.G. Arnold, 2013. Efficient multi-objective calibration of a computationally intensive hydrologic model with parallel computing software in Python. Environmental Modelling & Software 46:208-218 https://doi.org/10.1016/j.envsoft.2013.03.013