DOI QR코드

DOI QR Code

Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer

  • Park, Sin-Aye (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2018.06.07
  • Accepted : 2018.09.04
  • Published : 2018.09.30

Abstract

Excessive exposure to estrogens is the most important risk factor for the development of hormone-sensitive cancers, especially breast cancer. Estrogen stimulates the expression of genes and proteins involved in cell proliferation by binding to estrogen receptor (ER). Another possible mechanism of ER-independent carcinogenicity of estrogens is based on the hydroxylation of estradiol resulting in the formation of catechol estrogens. Catechol estrogen 4-hydroxyestradiol ($4-OHE_2$) is further oxidized to catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. Evidence increasingly supports the critical role of $4-OHE_2$ in hormonal carcinogenesis via DNA adduct formation or production of reactive oxygen species, which finally contribute to the transformation of normal mammary epithelial cells and the enhanced growth of breast cancer cells. It is also reported that the level of $4-OHE_2$ or its quinones is highly up-regulated in urine or tissues of breast cancer patients. Thus, we highlight the oncogenic roles of $4-OHE_2$ in catechol estrogen-induced breast carcinogenesis.

Keywords

References

  1. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF. Cytochrome p450 1b1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res. 2007. 67: 812-817. https://doi.org/10.1158/0008-5472.CAN-06-2133
  2. Castagnetta LA, Granata OM, Traina A, Ravazzolo B, Amoroso M, Miele M, Bellavia V, Agostara B, Carruba G. Tissue content of hydroxyestrogens in relation to survival of breast cancer patients. Clin Cancer Res. 2002. 8: 3146-3155.
  3. Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R, Sutter T. Catechol estrogen quinones as initiators of breast and other human cancers: Implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta. 2006. 1766: 63-78.
  4. Cavalieri E, Frenkel K, Liehr JG, Rogan E, Roy D. Estrogens as endogenous genotoxic agents--DNA adducts and mutations. J Natl Cancer Inst Monogr. 2000. 75-93.
  5. Cavalieri E, Rogan E. Catechol quinones of estrogens in the initiation of breast, prostate, and other human cancers: Keynote lecture. Ann N Y Acad Sci. 2006. 1089: 286-301. https://doi.org/10.1196/annals.1386.042
  6. Cavalieri EL, Rogan EG. Depurinating estrogen-DNA adducts, generators of cancer initiation: Their minimization leads to cancer prevention. Clin Transl Med. 2016. 5: 12. https://doi.org/10.1186/s40169-016-0088-3
  7. Cavalieri EL, Stack DE, Devanesan PD, Todorovic R, Dwivedy I, Higginbotham S, Johansson SL, Patil KD, Gross ML, Gooden JK, Ramanathan R, Cerny RL, Rogan EG. Molecular origin of cancer: Catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci U S A. 1997. 94: 10937-10942. https://doi.org/10.1073/pnas.94.20.10937
  8. Chakravarti D, Mailander PC, Li KM, Higginbotham S, Zhang HL, Gross ML, Meza JL, Cavalieri EL, Rogan EG. Evidence that a burst of DNA depurination in sencar mouse skin induces error-prone repair and forms mutations in the h-ras gene. Oncogene. 2001. 20: 7945-7953. https://doi.org/10.1038/sj.onc.1204969
  9. Chang M. Dual roles of estrogen metabolism in mammary carcinogenesis. BMB Rep. 2011. 44: 423-434. https://doi.org/10.5483/BMBRep.2011.44.7.423
  10. Chen ZH, Na HK, Hurh YJ, Surh YJ. 4-hydroxyestradiol induces oxidative stress and apoptosis in human mammary epithelial cells: Possible protection by nf-kappab and erk/mapk. Toxicol Appl Pharmacol. 2005. 208: 46-56. https://doi.org/10.1016/j.taap.2005.01.010
  11. Devanesan P, Todorovic R, Zhao J, Gross ML, Rogan EG, Cavalieri EL. Catechol estrogen conjugates and DNA adducts in the kidney of male syrian golden hamsters treated with 4-hydroxyestradiol: Potential biomarkers for estrogen-initiated cancer. Carcinogenesis. 2001. 22: 489-497. https://doi.org/10.1093/carcin/22.3.489
  12. Fernandez SV, Russo IH, Russo J. Estradiol and its metabolites 4-hydroxyestradiol and 2-hydroxyestradiol induce mutations in human breast epithelial cells. Int J Cancer. 2006. 118: 1862-1868. https://doi.org/10.1002/ijc.21590
  13. Fussell KC, Udasin RG, Smith PJ, Gallo MA, Laskin JD. Catechol metabolites of endogenous estrogens induce redox cycling and generate reactive oxygen species in breast epithelial cells. Carcinogenesis. 2011. 32: 1285-1293. https://doi.org/10.1093/carcin/bgr109
  14. Gaikwad NW, Yang L, Muti P, Meza JL, Pruthi S, Ingle JN, Rogan EG, Cavalieri EL. The molecular etiology of breast cancer: Evidence from biomarkers of risk. Int J Cancer. 2008. 122: 1949-1957.
  15. Gao N, Nester RA, Sarkar MA. 4-hydroxy estradiol but not 2- hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor a through phosphatidylinositol 3-kinase/akt/frap pathway in ovcar-3 and a2780-cp70 human ovarian carcinoma cells. Toxicol Appl Pharmacol. 2004. 196: 124-135. https://doi.org/10.1016/j.taap.2003.12.002
  16. Hiraku Y, Yamashita N, Nishiguchi M, Kawanishi S. Catechol estrogens induce oxidative DNA damage and estradiol enhances cell proliferation. Int J Cancer. 2001. 92: 333-337. https://doi.org/10.1002/ijc.1193
  17. Khan WA, Alam K, Moinuddin. Catechol-estrogen modified DNA: A better antigen for cancer autoantibody. Arch Biochem Biophys. 2007. 465: 293-300. https://doi.org/10.1016/j.abb.2007.06.006
  18. Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ. Cyp1b1 enhances cell proliferation and metastasis through induction of emt and activation of wnt/beta-catenin signaling via sp1 upregulation. PLoS One. 2016. 11: e0151598. https://doi.org/10.1371/journal.pone.0151598
  19. Lareef MH, Garber J, Russo PA, Russo IH, Heulings R, Russo J. The estrogen antagonist ici-182-780 does not inhibit the transformation phenotypes induced by 17-beta-estradiol and 4-oh estradiol in human breast epithelial cells. Int J Oncol. 2005. 26: 423-429.
  20. Lewis JS, Thomas TJ, Klinge CM, Gallo MA, Thomas T. Regulation of cell cycle and cyclins by 16alpha-hydroxyestrone in mcf-7 breast cancer cells. J Mol Endocrinol. 2001. 27: 293 -307. https://doi.org/10.1677/jme.0.0270293
  21. Li KM, Todorovic R, Devanesan P, Higginbotham S, Kofeler H, Ramanathan R, Gross ML, Rogan EG, Cavalieri EL. Metabolism and DNA binding studies of 4-hydroxyestradiol and estradiol-3,4-quinone in vitro and in female aci rat mammary gland in vivo. Carcinogenesis. 2004. 25: 289-297.
  22. Liehr JG, Fang WF, Sirbasku DA, Ari-Ulubelen A. Carcinogenicity of catechol estrogens in syrian hamsters. J Steroid Biochem. 1986. 24: 353-356. https://doi.org/10.1016/0022-4731(86)90080-4
  23. Liehr JG, Ricci MJ. 4-hydroxylation of estrogens as marker of human mammary tumors. Proc Natl Acad Sci U S A. 1996. 93: 3294-3296. https://doi.org/10.1073/pnas.93.8.3294
  24. Liehr JG, Roy D. Free radical generation by redox cycling of estrogens. Free Radic Biol Med. 1990. 8: 415-423. https://doi.org/10.1016/0891-5849(90)90108-U
  25. Lottering ML, Haag M, Seegers JC. Effects of 17 beta-estradiol metabolites on cell cycle events in mcf-7 cells. Cancer Res. 1992. 52: 5926-5932.
  26. Lukong KE. Understanding breast cancer - the long and winding road. BBA Clin. 2017. 7: 64-77. https://doi.org/10.1016/j.bbacli.2017.01.001
  27. Mailander PC, Meza JL, Higginbotham S, Chakravarti D. Induction of a.T to g.C mutations by erroneous repair of depurinated DNA following estrogen treatment of the mammary gland of aci rats. J Steroid Biochem Mol Biol. 2006. 101: 204-215. https://doi.org/10.1016/j.jsbmb.2006.06.019
  28. Mense SM, Singh B, Remotti F, Liu X, Bhat HK. Vitamin c and alpha-naphthoflavone prevent estrogen-induced mammary tumors and decrease oxidative stress in female aci rats. Carcinogenesis. 2009. 30: 1202-1208. https://doi.org/10.1093/carcin/bgp093
  29. Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD, Melvin WT. Tumor-specific expression of cytochrome p450 cyp1b1. Cancer Res. 1997. 57: 3026-3031.
  30. Newbold RR, Liehr JG. Induction of uterine adenocarcinoma in cd-1 mice by catechol estrogens. Cancer Res. 2000. 60: 235-237.
  31. Nutter LM, Wu YY, Ngo EO, Sierra EE, Gutierrez PL, Abul-Hajj YJ. An o-quinone form of estrogen produces free radicals in human breast cancer cells: Correlation with DNA damage. Chem Res Toxicol. 1994. 7: 23-28. https://doi.org/10.1021/tx00037a004
  32. Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D. Reactive oxygen species via redox signaling to pi3k/akt pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mam- mary epithelial cells. PLoS One. 2013. 8: e54206. https://doi.org/10.1371/journal.pone.0054206
  33. Paquette B, Bisson M, Baptiste C, Therriault H, Lemay R, Cantin AM. Invasiveness of breast cancer cells mda-mb-231 through extracellular matrix is increased by the estradiol metabolite 4-hydroxyestradiol. Int J Cancer. 2005. 113: 706-711. https://doi.org/10.1002/ijc.20647
  34. Paquette B, Bisson M, Therriault H, Lemay R, Pare M, Banville P, Cantin AM. Activation of matrix metalloproteinase-2 and -9 by 2- and 4-hydroxyestradiol. J Steroid Biochem Mol Biol. 2003. 87: 65-73. https://doi.org/10.1016/S0960-0760(03)00386-8
  35. Park SA, Na HK, Kim EH, Cha YN, Surh YJ. 4-hydroxyestradiol induces anchorage-independent growth of human mammary epithelial cells via activation of ikappab kinase: Potential role of reactive oxygen species. Cancer Res. 2009. 69: 2416-2424. https://doi.org/10.1158/0008-5472.CAN-08-2177
  36. Raftogianis R, Creveling C, Weinshilboum R, Weisz J. Estrogen metabolism by conjugation. J Natl Cancer Inst Monogr. 2000. 113-124.
  37. Rogan EG, Badawi AF, Devanesan PD, Meza JL, Edney JA, West WW, Higginbotham SM, Cavalieri EL. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: Potential biomarkers of susceptibility to cancer. Carcinogenesis. 2003. 24: 697-702. https://doi.org/10.1093/carcin/bgg004
  38. Roy D, Liehr JG. Temporary decrease in renal quinone reductase activity induced by chronic administration of estradiol to male syrian hamsters. Increased superoxide formation by redox cycling of estrogen. J Biol Chem. 1988. 263: 3646-3651.
  39. Russo J, Hasan Lareef M, Balogh G, Guo S, Russo IH. Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells. J Steroid Biochem Mol Biol. 2003. 87: 1-25. https://doi.org/10.1016/S0960-0760(03)00390-X
  40. Saeed M, Rogan E, Fernandez SV, Sheriff F, Russo J, Cavalieri E. Formation of depurinating n3adenine and n7guanine adducts by mcf-10f cells cultured in the presence of 4-hydroxyestradiol. Int J Cancer. 2007. 120: 1821-1824. https://doi.org/10.1002/ijc.22399
  41. Seeger H, Wallwiener D, Kraemer E, Mueck AO. Comparison of possible carcinogenic estradiol metabolites: Effects on pro- liferation, apoptosis and metastasis of human breast cancer cells. Maturitas. 2006. 54: 72-77. https://doi.org/10.1016/j.maturitas.2005.08.010
  42. Singh S, Chakravarti D, Edney JA, Hollins RR, Johnson PJ, West WW, Higginbotham SM, Cavalieri EL, Rogan EG. Relative imbalances in the expression of estrogen-metabolizing enzymes in the breast tissue of women with breast carcinoma. Oncol Rep. 2005. 14: 1091-1096.
  43. Todorovic R, Devanesan P, Higginbotham S, Zhao J, Gross ML, Rogan EG, Cavalieri EL. Analysis of potential biomarkers of estrogen-initiated cancer in the urine of syrian golden hamsters treated with 4-hydroxyestradiol. Carcinogenesis. 2001. 22: 905-911. https://doi.org/10.1093/carcin/22.6.905
  44. Turan VK, Sanchez RI, Li JJ, Li SA, Reuhl KR, Thomas PE, Conney AH, Gallo MA, Kauffman FC, Mesia-Vela S. The effects of steroidal estrogens in aci rat mammary carcinogenesis: 17beta-estradiol, 2-hydroxyestradiol, 4-hydroxyestradiol, 16alpha-hydroxyestradiol, and 4-hydroxyestrone. J Endocrinol. 2004. 183: 91-99. https://doi.org/10.1677/joe.1.05802
  45. Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015. 12: 106 -116.
  46. Wen C, Wu L, Fu L, Wang B, Zhou H. Unifying mechanism in the initiation of breast cancer by metabolism of estrogen (review). Mol Med Rep. 2017. 16: 1001-1006. https://doi.org/10.3892/mmr.2017.6738
  47. Yager JD. Catechol-o-methyltransferase: Characteristics, polymorphisms and role in breast cancer. Drug Discov Today Dis Mech. 2012. 9: e41-e46.
  48. Zahid M, Kohli E, Saeed M, Rogan E, Cavalieri E. The greater reactivity of estradiol-3,4-quinone vs estradiol-2,3-quinone with DNA in the formation of depurinating adducts: Implications for tumor-initiating activity. Chem Res Toxicol. 2006. 19: 164-172. https://doi.org/10.1021/tx050229y
  49. Zhang Y, Gaikwad NW, Olson K, Zahid M, Cavalieri EL, Rogan EG. Cytochrome p450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism. 2007. 56: 887-894. https://doi.org/10.1016/j.metabol.2007.03.001
  50. Zhao Z, Kosinska W, Khmelnitsky M, Cavalieri EL, Rogan EG, Chakravarti D, Sacks PG, Guttenplan JB. Mutagenic activity of 4-hydroxyestradiol, but not 2-hydroxyestradiol, in bb rat2 embryonic cells, and the mutational spectrum of 4-hydroxyestradiol. Chem Res Toxicol. 2006. 19: 475-479. https://doi.org/10.1021/tx0502645
  51. Zheng W, Xie DW, Jin F, Cheng JR, Dai Q, Wen WQ, Shu XO, Gao YT. Genetic polymorphism of cytochrome p450-1b1 and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2000. 9: 147-150.
  52. Zhu BT, Conney AH. Functional role of estrogen metabolism in target cells: Review and perspectives. Carcinogenesis. 1998. 19: 1-27. https://doi.org/10.1093/carcin/19.1.1